БЛОГ

Archive for the ‘computing’ category: Page 409

Mar 30, 2020

Skyrmion ‘whirls’ show promise for low-energy computer circuitry

Posted by in categories: computing, nanotechnology

UNSW material scientists have shed new light on a promising new way to store and process information in computers and electronic devices that could significantly cut down the energy required to maintain our digital lifestyles.

Skyrmions, which can be described as ‘whirl’ shaped magnetic textures at the nano-level, have in recent years been flagged as contenders for a more efficient way to store and process information. One of their advantages is that they possess a kind of built-in enhanced stability over time, making stored information non-volatile and ‘live’ longer. Up until now, information in computers is processed through dynamic memory, which is less stable and therefore requires more energy to maintain.

According to researchers from UNSW Science, who also collaborated with researchers from Brookhaven National Laboratory in the US and the University of Auckland, the potential of what they call “ lattice manipulation” to lower energy consumption in electronics is an attractive alternative.

Mar 30, 2020

Electricity from the coldness of the universe

Posted by in categories: computing, physics, solar power, space, sustainability

The obvious drawback of solar panels is that they require sunlight to generate electricity. Some have observed that for a device on Earth facing space, which has a frigid temperature, the chilling outflow of energy from the device can be harvested using the same kind of optoelectronic physics we have used to harness solar energy. New work, in a recent issue of Applied Physics Letters, from AIP Publishing, looks to provide a potential path to generating electricity like solar cells but that can power electronics at night. For more information see the IDTechEx report on Energy Harvesting Microwatt to Megawatt 2019–2029.

An international team of scientists has demonstrated for the first time that it is possible to generate a measurable amount of electricity in a diode directly from the coldness of the universe. The infrared semiconductor device faces the sky and uses the temperature difference between Earth and space to produce the electricity.

“The vastness of the universe is a thermodynamic resource,” said Shanhui Fan, an author on the paper. “In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation.”

Mar 29, 2020

Research Scientist, Experimental Quantum Computing

Posted by in categories: computing, quantum physics

:oooo.

Mar 27, 2020

New Qualcomm chips pack high-end features for lower-cost earbuds

Posted by in categories: computing, transportation

Qualcomm is getting ready to usher in a new generation of super low-power Bluetooth earbud chips.

The QCC514X and the QCC304X will support Qualcomm’s TrueWireless Mirroring technology. This means that wireless connectivity is secured with a single earbud that is paired with another. When the user removes the primary earbud, the other mirroring bud takes over the connection without any interruption.

The units will also support active control, or noise cancellation, bringing the popular feature commonly found on high-end units to mid-priced and entry-level buds. Qualcomm says its hybrid ANC feature allows for ambient noise leak-through that allows substantial but not total external noise suppression. That makes it easier for users to speak with others while wearing the buds or to more easily hear car horns or alarms.

Mar 27, 2020

Creating the universe in a computer

Posted by in categories: computing, space

Computer simulations help cosmologists unlock the mystery of how the universe evolved.

Mar 27, 2020

Neustristor: The Computer Chip-Shaped Neutron Source

Posted by in categories: biotech/medical, computing

Sandia National Laboratories distinguished technical staff member Juan Elizondo-Decanini developed a new configuration for neutron generators by turning from conventional cylindrical tubes to the flat geometry of computer chips. The Neutristor is an ultra-compact, disposable, neutron generator 1000 times smaller than the closest competitor. The most practical application, and the most likely to be near-term, would be a tiny medical neutron source implanted close to a tumor that would allow cancer patients to receive a low neutron dose over a long period at home instead of having to be treated at a hospital. Elizondo-Decanini says the technology is ready to be licensed for some commercial applications, but other more complex commercial applications could take five to ten years.

Mar 27, 2020

Black holes: The ultimate quantum computers?

Posted by in categories: computing, cosmology, quantum physics

Circa 2006


By Maggie Mckee

Nearly all of the information that falls into a black hole escapes back out, a controversial new study argues. The work suggests that black holes could one day be used as incredibly accurate quantum computers – if enormous theoretical and practical hurdles can first be overcome.

Continue reading “Black holes: The ultimate quantum computers?” »

Mar 27, 2020

Physicists to Build a Quantum Teleporter ‘Wormhole’ Modeled on Black Holes

Posted by in categories: computing, cosmology, quantum physics

Scientists are attempting to entangle black holes into a working wormhole using quantum computers.

Mar 27, 2020

Making sense of cells

Posted by in categories: biotech/medical, computing, food, mathematics, neuroscience

Our body’s ability to detect disease, foreign material, and the location of food sources and toxins is all determined by a cocktail of chemicals that surround our cells, as well as our cells’ ability to ‘read’ these chemicals. Cells are highly sensitive. In fact, our immune system can be triggered by the presence of just one foreign molecule or ion. Yet researchers don’t know how cells achieve this level of sensitivity.

Now, scientists at the Biological Physics Theory Unit at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at City University of New York have created a simple model that is providing some answers. They have used this model to determine which techniques a cell might employ to increase its sensitivity in different circumstances, shedding light on how the biochemical networks in our bodies operate.

“This model takes a complex biological system and abstracts it into a simple, understandable mathematical framework,” said Dr. Vudtiwat Ngampruetikorn, former postdoctoral researcher at OIST and the first author of the research paper, which was published in Nature Communications. “We can use it to tease apart how cells might choose to spend their energy budget, depending on the world around them and other cells they might be talking to.”

Continue reading “Making sense of cells” »

Mar 26, 2020

Samsung brings cutting-edge ultraviolet light technology to DRAM production

Posted by in categories: computing, electronics

Samsung Electronics today announced it will be introducing the first DRAM memory modules in the industry designed with cutting-edge Extreme Ultraviolet Technology (EUV).

One of the world’s leading memory manufacturers, Samsung says that response to a million evaluation units of its first line of 10nm-class DDR4 DRAM modules has been positive and that it will soon begin processing orders for worldwide distribution.

EUV technology allows memory modules to be manufactured more accurately and more quickly. It speeds up the lithography process by reducing the number of repetitive steps and facilitates the production of complex chip patterns. It means greater performance accuracy and a shortened development time.