БЛОГ

Archive for the ‘computing’ category: Page 41

Sep 18, 2024

‘Massless’ battery promises a 70% increase in EV range

Posted by in categories: computing, mobile phones, transportation

Researchers say they’ve built and tested a ‘structural battery’ that packs a device or EV’s chassis with energy, saving a ton of weight. It could unlock smartphones as thin as credit cards, laptops at half the weight and a 70% boost to EV range.

EVs rely heavily – pun intended – on large lithium-ion batteries to cover long distances. Researchers at Chalmers University of Technology wondered if they could build a battery that doubles as the load-bearing material holding the car together, and shed some weight.

As part of their work on what they call ‘massless energy storage,’ the research team in Sweden has developed a battery made of a carbon fiber composite. It promises similar stiffness to aluminum, while also being capable of storing a fair bit of energy – enough to be used commercially.

Sep 17, 2024

First of Its Kind DNA Computer Can Both Store Data And Solve Problems

Posted by in categories: biotech/medical, computing

For billions of years, life has used long molecules of deoxyribonucleic acid, or DNA, to store information and solve problems.

Today engineers are putting their own spin on DNA computing, to both record data and serve as biological computers, yet until now they’ve struggled to design a synthetic system that can store and perform tasks at the same time.

New research has now demonstrated it’s possible to package and present DNA so it can manage both, providing a full suite of computing functions out of strings of nucleic acids. Specifically, we’re talking about storing, reading, erasing, moving, and rewriting data, and handling these functions in programmable and repeatable ways, similar to how a conventional computer would operate.

Sep 17, 2024

Is life a complex computational process?

Posted by in categories: biotech/medical, chemistry, computing, genetics

However, more recent research suggests there are likely countless other possibilities for how life might emerge through potential chemical combinations. As the British chemist Lee Cronin, the American theoretical physicist Sara Walker and others have recently argued, seeking near-miraculous coincidences of chemistry can narrow our ability to find other processes meaningful to life. In fact, most chemical reactions, whether they take place on Earth or elsewhere in the Universe, are not connected to life. Chemistry alone is not enough to identify whether something is alive, which is why researchers seeking the origin of life must use other methods to make accurate judgments.

Today, ‘adaptive function’ is the primary criterion for identifying the right kinds of biotic chemistry that give rise to life, as the theoretical biologist Michael Lachmann (our colleague at the Santa Fe Institute) likes to point out. In the sciences, adaptive function refers to an organism’s capacity to biologically change, evolve or, put another way, solve problems. ‘Problem-solving’ may seem more closely related to the domains of society, culture and technology than to the domain of biology. We might think of the problem of migrating to new islands, which was solved when humans learned to navigate ocean currents, or the problem of plotting trajectories, which our species solved by learning to calculate angles, or even the problem of shelter, which we solved by building homes. But genetic evolution also involves problem-solving. Insect wings solve the ‘problem’ of flight. Optical lenses that focus light solve the ‘problem’ of vision. And the kidneys solve the ‘problem’ of filtering blood. This kind of biological problem-solving – an outcome of natural selection and genetic drift – is conventionally called ‘adaptation’. Though it is crucial to the evolution of life, new research suggests it may also be crucial to the origins of life.

This problem-solving perspective is radically altering our knowledge of the Universe. Life is starting to look a lot less like an outcome of chemistry and physics, and more like a computational process.

Sep 17, 2024

Researchers Propose a Smaller, more Noise-Tolerant Quantum Circuit for Cryptography

Posted by in categories: computing, encryption, information science, quantum physics

Researchers Propose a #Smaller, more #Noise-#Tolerant #Quantum #Circuit for #Cryptography.

MIT researchers new algorithm is as fast as Regev’s, requires fewer qubits, and has a higher tolerance to quantum noise, making it more feasible to implement…


The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.

Continue reading “Researchers Propose a Smaller, more Noise-Tolerant Quantum Circuit for Cryptography” »

Sep 16, 2024

Inspired by squids and octopi, a new screen stores and displays encrypted images without electronics

Posted by in categories: chemistry, computing, encryption, engineering

A flexible screen inspired in part by squid can store and display encrypted images like a computer—using magnetic fields rather than electronics. The research is reported in Advanced Materials by University of Michigan engineers.

“It’s one of the first times where mechanical materials use magnetic fields for system-level encryption, information processing and computing. And unlike some earlier mechanical computers, this device can wrap around your wrist,” said Joerg Lahann, the Wolfgang Pauli Collegiate Professor of Chemical Engineering and co-corresponding author of the study.

Continue reading “Inspired by squids and octopi, a new screen stores and displays encrypted images without electronics” »

Sep 16, 2024

Bluetooth 6.0 is almost here, and it’s bringing a useful feature

Posted by in category: computing

One of the most exciting features in Bluetooth 6.0 is called “Channel Sounding,” which makes it possible to locate lost devices and/or other objects with much more precision than previous versions of Bluetooth. In fact, you’ll be able to locate them down to the centimeter.

And this device detection feature isn’t just for close-range uses — it will be able to work across long distances and be just as effective. If it lives up to the hype, this improvement could significantly improve devices like Apple’s AirTag and apps like Google’s Find My Device.

Bluetooth 6.0’s Channel Sounding could even find its way into more types of devices that need protection against loss, such as remote controls (which somehow tend to disappear without a trace).

Sep 16, 2024

Scientists Invent a Hot-Emitter Transistor for Future High Performance, Low-Power, Multifunctional Devices

Posted by in categories: computing, futurism

Transistors, the building blocks of integrated circuits, face growing challenges as their size decreases. Developing transistors that use novel operating principles has become crucial to enhancing circuit performance.

Hot carrier transistors, which utilize the excess kinetic energy of carriers, have the potential to improve the speed and functionality of transistors. However, their performance has been limited by how hot carriers have traditionally been generated.

A team of researchers led by Prof. Liu Chi, Prof. Sun Dongming, and Prof. CHeng Huiming from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences has proposed a novel hot carrier generation mechanism called stimulated emission of heated carriers (SEHC).

Sep 16, 2024

Microsoft makes quantum breakthrough, plans commercial offering

Posted by in categories: computing, particle physics, quantum physics

Microsoft and Atom Computing aim to capitalize on a qubit-virtualization system that Microsoft and Quantinuum say has broken a logical-qubit creation record.

Sep 15, 2024

What Is Neuromorphic Computing?

Posted by in categories: computing, engineering, neuroscience

Neuromorphic computing, also known as neuromorphic engineering, is an approach to computing that mimics the way the human brain works.

Sep 15, 2024

Device malfunctions from continuous current lead to discovery that can improve design of microelectronic devices

Posted by in categories: computing, electronics

A new study led by researchers at the University of Minnesota Twin Cities is providing new insights into how next-generation electronics, including memory components in computers, break down or degrade over time. Understanding the reasons for degradation could help improve efficiency of data storage solutions.

Page 41 of 877First3839404142434445Last