БЛОГ

Archive for the ‘computing’ category: Page 425

Aug 13, 2021

Classical variational simulation of the Quantum Approximate Optimization Algorithm

Posted by in categories: computing, information science, quantum physics

In this work, we introduce a classical variational method for simulating QAOA, a hybrid quantum-classical approach for solving combinatorial optimizations with prospects of quantum speedup on near-term devices. We employ a self-contained approximate simulator based on NQS methods borrowed from many-body quantum physics, departing from the traditional exact simulations of this class of quantum circuits.

We successfully explore previously unreachable regions in the QAOA parameter space, owing to good performance of our method near optimal QAOA angles. Model limitations are discussed in terms of lower fidelities in quantum state reproduction away from said optimum. Because of such different area of applicability and relative low computational cost, the method is introduced as complementary to established numerical methods of classical simulation of quantum circuits.

Classical variational simulations of quantum algorithms provide a natural way to both benchmark and understand the limitations of near-future quantum hardware. On the algorithmic side, our approach can help answer a fundamentally open question in the field, namely whether QAOA can outperform classical optimization algorithms or quantum-inspired classical algorithms based on artificial neural networks48,49,50.

Aug 13, 2021

Neural recording and stimulation using wireless networks of microimplants

Posted by in categories: computing, neuroscience

Wirelessly powered microchips, which have an ~1 GHz electromagnetic transcutaneous link to an external telecom hub, can be used for multichannel in vivo neural sensing, stimulation and data acquisition.

Aug 13, 2021

Researchers take step toward next-generation brain-computer interface system

Posted by in categories: biotech/medical, computing, neuroscience

A new kind of neural interface system that coordinates the activity of hundreds of tiny brain sensors could one day deepen understanding of the brain and lead to new medical therapies.

Aug 11, 2021

The Amazing Brain: Visualizing Data to Understand Brain Networks

Posted by in categories: computing, neuroscience

The NIH-led Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative continues to teach us about the world’s most sophisticated computer: the human brain. This striking image offers a spectacular case in point, thanks to a new tool called Visual Neuronal Dynamics (VND).

VND is not a camera. It is a powerful software program that can display, animate, and analyze models of neurons and their connections, or networks, using 3D graphics. What you’re seeing in this colorful image is a strip of mouse primary visual cortex, the area in the brain where incoming sensory information gets processed into vision.

This strip contains more than 230,000 neurons of 17 different cell types. Long and spindly excitatory neurons that point upward (purple, blue, red, orange) are intermingled with short and stubby inhibitory neurons (green, cyan, magenta). Slicing through the neuronal landscape is a neuropixels probe (silver): a tiny flexible silicon detector that can record brain activity in awake animals [1].

Aug 10, 2021

‘Holy grail discovery’ in solid-state physics could usher in new technologies

Posted by in categories: computing, physics, transportation

This axion insulating state was realized, Bansil says, by combining certain metals and observing their magnetoelectric response. In this case, researchers used a solid state chip composed of manganese bismuth telluride, which were adhered together in two-dimensional layers, to measure the resulting electric and magnetic properties.

Researchers note that such a finding has implications for a range of technologies, including sensors, switches, computers, and memory storage devices, among many others. The “storage, transportation, and manipulation of magnetic data could become much faster, more robust, and energy-efficient” if scientists can integrate these new topological materials into future devices, the researchers write.

“It’s like discovering a new element,” Bansil says. “And we know there’s going to be all sorts of interesting applications for this.”

Aug 9, 2021

Stripes give away Majoranas

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Majoranas particles found.


Majorana particles have been getting bad publicity: a claimed discovery in ultracold nanowires had to be retracted. Now Leiden physicists open up a new door to detecting Majoranas in a different experimental system, the Fu-Kane heterostructure, they announce in Physical Review Letters.

Majorana particles are quasiparticles: collective movements of particles (electrons in this case) which behave as single particles. If detected in real life, they could be used to build stable quantum computers.

Continue reading “Stripes give away Majoranas” »

Aug 9, 2021

Researchers around the world are buzzing about a candidate superconductor

Posted by in categories: computing, quantum physics

Since receiving a $25 million grant in 2,019 to become the first National Science Foundation (NSF) Quantum Foundry, UC Santa Barbara researchers affiliated with the foundry have been working to develop materials that can enable quantum information-based technologies for such applications as quantum computing, communications, sensing, and simulation.

They may have done it.

In a new paper, published in the journal Nature Materials, foundry co-director and UCSB professor Stephen Wilson and multiple co-authors, including key collaborators at Princeton University, study a new material developed in the Quantum Foundry as a candidate superconductor—a material in which electrical resistance disappears and magnetic fields are expelled—that could be useful in future quantum computation.

Aug 7, 2021

AWS taps up Singapore scientists to overcome hurdles facing quantum computing

Posted by in categories: computing, encryption, quantum physics

‘Some forms of encryption used today can be broken by future large-scale quantum computers, which drives a search for alternatives’


“Some forms of encryption used today can be broken by future large-scale quantum computers, which also drives a search for alternatives,” Ling said.

In a canned statement, the NUS said AWS will gain access to the university’s National Quantum-Safe Network, a vendor-neutral platform for developing technology and integrating some of it into local fiber networks.

Continue reading “AWS taps up Singapore scientists to overcome hurdles facing quantum computing” »

Aug 7, 2021

Innovation is a risk!

Posted by in categories: big data, computing, disruptive technology, evolution, homo sapiens, information science, innovation, internet, moore's law, robotics/AI, singularity, supercomputing

No, it’s not forbidden to innovate, quite the opposite, but it’s always risky to do something different from what people are used to. Risk is the middle name of the bold, the builders of the future. Those who constantly face resistance from skeptics. Those who fail eight times and get up nine.

(Credit: Adobe Stock)

Fernando Pessoa’s “First you find it strange. Then you can’t get enough of it.” contained intolerable toxicity levels for Salazar’s Estado Novo (Portugal). When the level of difference increases, censorship follows. You can’t censor censorship (or can you?) when, deep down, it’s a matter of fear of difference. Yes, it’s fear! Fear of accepting/facing the unknown. Fear of change.

Continue reading “Innovation is a risk!” »

Aug 7, 2021

Who Will Win the Metaverse? Not Mark Zuckerberg or Facebook

Posted by in category: computing

The social networking giant and its CEO have vast ambitions to dominate the next big thing in computing, but other tech giants are in a better position to turn the hype into reality.