Toggle light / dark theme

Believe it or not, graphics card prices seem to be headed down. 3D Center has been tracking and reporting pricing trends for GPUs in Germany and Austria. There’s good news: prices are indeed on a downward slope. Even better; this is the third month in a row they have declined, so we can’t just write it off as a one one-time fluke. That said, here’s the bad news: even if this trend continues, which is a big if, prices are still so inflated that months of “progress” may only result in GPUs returning to MSRP, supply issues notwithstanding. At this point we’ll take what we can get.

The report by 3D Center for February mirrors the company’s report from last month, which we covered here. There’s a noticeable downward trend in pricing for both AMD and Nvidia GPUs. It’s almost shocking to see after so many reports of price increases. The trend is undeniable. According to 3D Center, the February price of AMD’s Radeon RDNA2 cards has fallen 18 percent, to 145 percent over MSRP. For Nvidia’s Ampere GPUs, prices fell 20 percent, leaving them 157 percent over MSRP.

Researchers at Lund University in Sweden have succeeded in developing a simple hydrocarbon molecule with a logic gate function, similar to that in transistors, in a single molecule. The discovery could make electric components on a molecular scale possible in the future. The results are published in Nature Communications.

Manufacturing very small components is an important challenge in both research and development. One example is transistors—the smaller they are, the faster and more energy efficient our computers become. But is there a limit to how small logic gates can become? And is it possible to create electric machines on a molecular scale? Yes, perhaps, is the answer from a chemistry research team at Lund University.

“We have developed a simple molecule that changes its form, and at the same time goes from insulating to conductive, when exposed to electric potential. The successful formula was to design a so-called anti-aromatic ring in a molecule so that it becomes more robust and can both receive and relay electrons,” says Daniel Strand, chemistry researcher at Lund University.

A quasiparticle that forms in semiconductors can now be moved around at room temperature, a University of Michigan-led study has shown. The finding could cool down computers, enabling faster speeds and higher efficiencies, and potentially make LEDs and solar panels more efficient.

Today’s electronic devices rely on electrons to move both energy and information around, but about half of that energy is wasted as heat due to . Excitons, which escape traditional electrical losses, are one potential alternative.

“If you think of the past almost two decades, the computers have always been at two to three gigahertz—they never increase the speed. And that’s the reason. It just gets too hot,” said Parag Deotare, assistant professor of electrical engineering and science and corresponding author of the study.

A comprehensive investigation by KAUST researchers sets the record straight on the formation of hydrogen peroxide in micrometer-sized water droplets, or microdroplets, and shows that ozone is the key to this transformation1,2.

The is a crucial site for numerous natural, domestic and such as ocean-atmosphere exchange, cloud and dew formation, aerated beverages and bioreactors. Yet, probing chemical transformations at the air– interface is challenging due to the lack of surface-specific techniques or computational models.

Recent research revealed that water spontaneously transforms into 30–110 micromolar hydrogen peroxide (H2O2) in microdroplets, obtained by condensing vapor or spraying water using pressurized nitrogen gas. The textbook understanding of water is thus challenged by how the mild temperature and pressure conditions, together with the absence of catalysts, co-solvents and significant applied energy, could break covalent O–H bonds. It was hypothesized that this unusual phenomenon resulted from an ultrahigh electric field at the air-water interface that assists OH radical formation, but no direct evidence has been reported.

ETH physicists have modified one of the major schemes for quantum error correction and put it into practice, demonstrating that they can substantially prolong the lifetime of quantum states—a crucial ingredient for future large-scale quantum computers.

In modern computing devices, literally billions of transistors work restlessly in almost perfect harmony. The keys to producing near-perfect computation from devices made from imperfect components are the use of digitisation and error correction, with the latter encompassing procedures to detect and rectify inaccuracies as they occur. The challenge of preventing errors from accumulating is one that future quantum computers have to face as well—in fact it forms the main barrier to realizing useful computations. Alas, the tools that have been perfected for classical computers cannot be applied directly to quantum computers, which play by another set of rules, those of quantum mechanics. Ingenious solutions for quantum error correction have been proposed over the past couple of decades, and recently there has been encouraging progress towards implementing such methods in state-of-the-art quantum computers. Writing in Nature Physics, the group of Prof.

Similarly, entanglement seems to be fundamental to the existence of space-time. This was the conclusion reached by a pair of postdocs in 2006: Shinsei Ryu (now at the University of Illinois, Urbana-Champaign) and Tadashi Takayanagi (now at Kyoto University), who shared the 2015 New Horizons in Physics prize for this work. “The idea was that the way that [the geometry of] space-time is encoded has a lot to do with how the different parts of this memory chip are entangled with each other,” Van Raamsdonk explained.

Inspired by their work, as well as by a subsequent paper of Maldacena’s, in 2010 Van Raamsdonk proposed a thought experiment to demonstrate the critical role of entanglement in the formation of space-time, pondering what would happen if one cut the memory chip in two and then removed the entanglement between qubits in opposite halves. He found that space-time begins to tear itself apart, in much the same way that stretching a wad of gum by both ends yields a pinched-looking point in the center as the two halves move farther apart. Continuing to split that memory chip into smaller and smaller pieces unravels space-time until only tiny individual fragments remain that have no connection to one another. “If you take away the entanglement, your space-time just falls apart,” said Van Raamsdonk. Similarly, “if you wanted to build up a space-time, you’d want to start entangling [qubits] together in particular ways.”

Combine those insights with Swingle’s work connecting the entangled structure of space-time and the holographic principle to tensor networks, and another crucial piece of the puzzle snaps into place. Curved space-times emerge quite naturally from entanglement in tensor networks via holography. “Space-time is a geometrical representation of this quantum information,” said Van Raamsdonk.

We can’t make transistors any smaller, is this the end of Moore’s Law?

There has been a lot of talk about the end of Moore’s Law for at least a decade now and what kind of implications this will have on modern society. Since the invention of the computer transistor in 1947, the number of transistors packed onto the silicon chips that power the modern world has steadily grown in density, leading to the exponential growth of computing power over the last 70 years. A transistor is a physical object, however, and being purely physical it is governed by laws of physics like every other physical object. That means there is a physical limit to how small a transistor can be. Back when Gordon Moore made his famous prediction about the pace of growth in computing power, no one was really thinking about transistors at nanometer scales. But as we enter the third decade of the 21st century, our reliance on packing more transistors into the same amount of silicon is brushing up against the very boundaries of what is physically possible, leading many to worry that the pace of innovation we’ve become accustomed to might come to a screeching end in the very near future.

Full Story:


Scientists tell us that transistors can’t be made any smaller, sounding the end of Moore’s Law. Does this threaten our progress in the future?