БЛОГ

Archive for the ‘computing’ category: Page 470

Jun 29, 2021

A new type of quasiparticle

Posted by in categories: computing, information science, quantum physics

Russian scientists have experimentally proved the existence of a new type of quasiparticle—previously unknown excitations of coupled pairs of photons in qubit chains. This discovery could be a step towards disorder-robust quantum metamaterials. The study was published in Physical Review B.

Superconducting qubits are a leading qubit modality today that is currently being pursued by industry and academia for quantum computing applications. However, the performance of quantum computers is largely affected by decoherence that contributes to a qubit’s extremely short lifespan and causes computational errors. Another major challenge is low controllability of large qubit arrays.

Metamaterial quantum simulators provide an alternative approach to quantum computing, as they do not require a large amount of control electronics. The idea behind this approach is to create artificial matter out of qubits, the physics of which will obey the same equations as for some real matter. Conversely, you can program the simulator in such a way as to embody matter with properties that have not yet been discovered in nature.

Jun 29, 2021

Quantum-computing startup Rigetti to offer modular processors

Posted by in categories: computing, quantum physics

A quantum-computing startup announced Tuesday that its future quantum processor designs will differ significantly from its current offerings. Rather than building a monolithic processor as everyone else has, Rigetti Computing will build smaller collections of qubits on chips that can be physically linked together into a single functional processor. This isn’t multiprocessing so much as modular chip design.

The move is consequential for both Rigetti processors and quantum computing more generally.

Jun 28, 2021

UNR to get $2.49 million to study quantum computing

Posted by in categories: computing, quantum physics

The money was awarded through DoE’s Established Program to Stimulate Competitive Research.

Jun 27, 2021

Backscatter breakthrough runs near-zero-power IoT communicators at 5G speeds everywhere

Posted by in categories: computing, internet

The promise of 5G Internet of Things (IoT) networks requires more scalable and robust communication systems—ones that deliver drastically higher data rates and lower power consumption per device.

Backscatter radios—passive sensors that reflect rather than radiate energy—are known for their low-cost, low-complexity, and battery-free operation, making them a potential key enabler of this future although they typically feature low data rates and their performance strongly depends on the surrounding environment.

Researchers at the Georgia Institute of Technology, Nokia Bell Labs, and Heriot-Watt University have found a low-cost way for backscatter radios to support high-throughput communication and 5G-speed Gb/sec data transfer using only a single transistor when previously it required expensive and multiple stacked transistors.

Jun 27, 2021

Intel to make a custom SiFive-based RISC-V CPU, will be fabricated on a 7 nm node in a first step towards competing directly with Arm-based chips

Posted by in category: computing

Intel has taken its first steps towards directly taking on Arm-based chips through a new partnership with potential acquisition target SiFive. The hook-up will see Intel license SiFive’s chip architecture and fabricate a custom SoC expected in 2022.

Jun 27, 2021

The quantum world of diamonds

Posted by in categories: biotech/medical, computing, quantum physics

3 mins. This is really fascinating. Several applications, including quantum computing. Need special diamonds that scientists now can produce.


Diamonds are dazzling physicists with their powerful quantum properties. A particular impurity — the nitrogen-vacancy (NV) centre — allows diamonds to be used for everything from geolocation to diagnosing disease. This animation takes a closer look at these NV centres, and the carefully crafted artificial diamonds that make them possible.

Jun 26, 2021

New tech builds ultralow-loss integrated photonic circuits

Posted by in category: computing

EPFL scientists have developed ultralow-loss silicon nitride integrated circuits that are central for many photonic devices, such as chip-scale frequency combs, narrow-linewidth lasers, coherent LiDAR, and neuromorphic computing.

Jun 26, 2021

Nanotech OLED electrode liberates 20% more light, could slash display power consumption

Posted by in categories: computing, mobile phones, nanotechnology

A new electrode that could free up 20% more light from organic light-emitting diodes has been developed at the University of Michigan. It could help extend the battery life of smartphones and laptops, or make next-gen televisions and displays much more energy efficient.

The approach prevents light from being trapped in the light-emitting part of an OLED, enabling OLEDs to maintain brightness while using less power. In addition, the electrode is easy to fit into existing processes for making OLED displays and light fixtures.

“With our approach, you can do it all in the same ,” said L. Jay Guo, U-M professor of electrical and computer engineering and corresponding author of the study.

Jun 25, 2021

Achieving Precision in Quantum Material Simulations

Posted by in categories: chemistry, computing, particle physics, quantum physics

In fall of 2019, we demonstrated that the Sycamore quantum processor could outperform the most powerful classical computers when applied to a tailor-made problem. The next challenge is to extend this result to solve practical problems in materials science, chemistry and physics. But going beyond the capabilities of classical computers for these problems is challenging and will require new insights to achieve state-of-the-art accuracy. Generally, the difficulty in performing quantum simulations of such physical problems is rooted in the wave nature of quantum particles, where deviations in the initial setup, interference from the environment, or small errors in the calculations can lead to large deviations in the computational result.

In two upcoming publications, we outline a blueprint for achieving record levels of precision for the task of simulating quantum materials. In the first work, we consider one-dimensional systems, like thin wires, and demonstrate how to accurately compute electronic properties, such as current and conductance. In the second work, we show how to map the Fermi-Hubbard model, which describes interacting electrons, to a quantum processor in order to simulate important physical properties. These works take a significant step towards realizing our long-term goal of simulating more complex systems with practical applications, like batteries and pharmaceuticals.

Jun 25, 2021

Chinese products brought to space spark online discussion, including Huawei mobile phone, Lenovo ThinkPad

Posted by in categories: computing, mobile phones, space

Chinese taikonauts’ electronic devices that were brought to Tiangong space station drew Chinese IT fans’ attentions on social media Sina Weibo. Netizens have found out those devices are all produced by Chinese companies.


Netizens have found that the electronic devices brought to China’s Tiangong space station and Shenzhou-12 capsule are all produced by Chinese companies. The topic “daily life of Chinese astronauts” had 240 million views on Sina Weibo by Thursday.

Various devices including a Huawei P30 mobile phone, Lenovo ThinkPad laptop and Xiaomi electronic screwdriver can be seen clearly in the livestream, released on Wednesday.

Continue reading “Chinese products brought to space spark online discussion, including Huawei mobile phone, Lenovo ThinkPad” »