БЛОГ

Archive for the ‘computing’ category: Page 49

Aug 29, 2024

Fusion’s New Hero: The Liquid Metal That Beats the Heat

Posted by in categories: computing, nuclear energy

Scientists at the Princeton Plasma Physics Laboratory are pioneering the use of liquid lithium in spherical tokamaks to enhance fusion performance.

Recent computer simulations suggest the optimal placement of lithium vapor to protect the tokamak’s interior from intense plasma heat. Innovative configurations, such as the lithium “cave” and porous plasma-facing walls, aim to simplify the design and improve heat dissipation, contributing to the future of fusion energy.

Continue reading “Fusion’s New Hero: The Liquid Metal That Beats the Heat” »

Aug 28, 2024

Computational imaging empowers laser material processing with snapshot compressive microscopy

Posted by in categories: computing, materials

A team of researchers has developed a novel computational imaging system designed to address the challenges of real-time monitoring in ultrafast laser material processing. The new system, known as Dual-Path Snapshot Compressive Microscopy (DP-SCM), represents a significant advancement in the field, offering unprecedented capabilities for high-speed, high-resolution imaging. The team was led by Yuan Xin from Westlake University and Shi Liping from Xidian University.

Aug 28, 2024

Computer Scientists Prove That Heat Destroys Entanglement

Posted by in categories: computing, information science, quantum physics

In February, four computer scientists set out to develop an algorithm for simulating quantum systems.


While devising a new quantum algorithm, four researchers accidentally established a hard limit on the “spooky” phenomenon.

Aug 28, 2024

Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide

Posted by in categories: computing, particle physics, quantum physics

The tin-vacancy center in diamond has properties that could be useful for quantum networks.

In a new study, researchers show how this defect’s electron spin can be controlled — and coherence prolonged — using a superconducting microwave waveguide.


Even the most pristine diamonds can host defects arising from missing atoms (vacancies) or naturally occurring impurities. These defects possess atomlike properties such as charge and spin, which can be accessed optically or magnetically. Over the past few decades, researchers have studied various defects to understand and harness these properties. One in particular—the tin-vacancy center, in which a tin atom resides on an interstitial site with two neighboring vacancies—exhibits exceptionally useful optical and spin properties, making it highly relevant in the field of quantum communication. Here, we explore how the spin properties behave under different magnetic field directions.

Continue reading “Microwave Control of the Tin-Vacancy Spin Qubit in Diamond with a Superconducting Waveguide” »

Aug 28, 2024

Mind-Reading chip turns thoughts into text — A game changer

Posted by in categories: computing, neuroscience

Researchers at the École Polytechnique Fédérale de Lausanne (EPFL) have developed a revolutionary miniaturized brain-machine interface (MiBMI) that converts brain activity directly into text. This breakthrough technology, housed on silicon chips with a total area of just 8mm², marks a significant advancement in brain-computer interface technology.

The study, published in the IEEE Journal of Solid-State Circuits and presented at the International Solid-State Circuits Conference, highlights a device that could dramatically improve communication for individuals with severe motor impairments.

Aug 28, 2024

D-Wave’s Quantum Computer Serves as Brains Behind Study That Connects Neural Activity to Academic Performance

Posted by in categories: computing, education, information science, neuroscience, quantum physics

The study, published by a multi-institutional team of researchers…


Researchers used D-Wave’s quantum computing technology to explore the relationship between prefrontal brain activity and academic achievement, particularly focusing on the College Scholastic Ability Test (CSAT) scores in South Korea.

The study, published by a multi-institutional team of researchers across Korea in Scientific Reports, relied on functional near-infrared spectroscopy (fNIRS) to measure brain signals during various cognitive tasks and then applied a quantum annealing algorithm to identify patterns correlating with higher academic performance.

Continue reading “D-Wave’s Quantum Computer Serves as Brains Behind Study That Connects Neural Activity to Academic Performance” »

Aug 28, 2024

New technique shows promise for mass fabricating an exotic quasi-1D material

Posted by in categories: computing, nanotechnology, quantum physics

Researchers have fabricated a quasi-one-dimensional van der Waals zirconium telluride thin film, which is a form of a substance that has long promised advances in quantum computing, nano-electronics and other advanced technologies. Until now, it has stumped scientists who have tried to manufacture it in large-scale quantities.

Aug 28, 2024

Astronomers Uncover Risks to Planets that could Host Life

Posted by in categories: alien life, computing

A groundbreaking study has revealed that red dwarf stars can produce stellar flares that carry far-ultraviolet (far-UV) radiation levels much higher than previously believed. This discovery suggests that the intense UV radiation from these flares could significantly impact whether planets around red dwarf stars can be habitable. Led by current and former astronomers from the University of Hawaii Institute for Astronomy (IfA), the research was recently published in the Monthly Notices of the Royal Astronomical Society.

“Few stars have been thought to generate enough UV radiation through flares to impact planet habitability. Our findings show that many more stars may have this capability,” said astronomer Vera Berger, who undertook the study while in the Research Experiences for Undergraduates program at IfA, an initiative supported by the National Science Foundation.

Berger and her team used archival data from the GALEX space telescope to search for flares among 300,000 nearby stars. GALEX is a now-decommissioned NASA mission that simultaneously observed most of the sky at near-and far-UV wavelengths from 2003 to 2013. Using new computational techniques, the team mined novel insights from the data.

Aug 27, 2024

Thought-to-text chip smaller than Neuralink achieves 91% accuracy

Posted by in categories: computing, Elon Musk, neuroscience

The brain-machine interface race is on. While Elon Musk’s Neuralink has garnered most of the headlines in this field, a new small and thin chip out of Switzerland makes it look downright clunky by comparison. It also works impressively well.

The chip has been developed by researchers at the Ecole Polytechnique Federale de Lausanne (EPFL) and represents a leap forward in the sizzling space of brain-machine-interfaces (BMIs) – devices that are able to read activity in the brain and translate it into real-world output such as text on a screen. That’s because this particular device – known as a miniaturized brain-machine interface (MiBMI) – is extremely small, consisting of two thin chips measuring just 8 mm2 total. By comparison, Elon Musk’s Neuralink device clocks in at comparatively gargantuan size of about 23 × 8 mm (about 0.3 x .9 in).

Additionally, the EPFL chipset uses very little power, is reported to be minimally invasive, and consists of a fully integrated system that processes data in real time. That’s different from Neuralink, which requires the insertion of 64 electrodes into the brain and carries out its processing via an app located on a device outside of the brain.

Aug 27, 2024

Proof-of-concept study demonstrates mid-infrared computational temporal ghost imaging

Posted by in category: computing

Ghost imaging in the time domain allows for reconstructing fast temporal objects using a slow photodetector. The technique involves correlating random or pre-programmed probing temporal intensity patterns with the integrated signal measured after modulation by the temporal object. However, the implementation of temporal ghost imaging necessitates ultrafast detectors or modulators for measuring or pre-programming the probing intensity patterns, which are not available in all spectral regions especially in the mid-infrared region.

Page 49 of 877First4647484950515253Last