Toggle light / dark theme

Tiny particles from distant galaxies have caused plane accidents, election interference and game glitches. This video is sponsored by Brilliant. The first 200 people to sign up via https://brilliant.org/veritasium get 20% off a yearly subscription.

This video was inspired by the RadioLab Podcast “Bit Flip” https://ve42.co/BF — they’re brilliant science storytellers.

A Huge thanks to Dr Leif Scheick, Calla Cofield and the JPL Media Relations Team.

Thanks to Col Chris Hadfield. Check out his book: https://chrishadfield.ca/books/

▀▀▀
References:
J. F. Ziegler, “Terrestrial cosmic rays,” in IBM Journal of Research and Development, vol. 40 no. 1 pp. 19–39, Jan. 1,996 doi: 10.1147/rd.401.0019. — https://ve42.co/Ziegler1996

D. Binder, E. C. Smith and A. B. Holman, “Satellite Anomalies from Galactic Cosmic Rays,” in IEEE Transactions on Nuclear Science, vol. 22 no. 6 pp. 2675–2680, Dec. 1,975 doi: 10.1109/TNS.1975.4328188 https://ve42.co/Binder1975

Sept 6 (Reuters) — The city of Taylor, Texas — one of two locations in the state under consideration by Samsung Electronics (005930.KS) for a $17 billion chip plant — plans to offer extensive property tax breaks if it is chosen by the South Korean tech giant.

Taylor is competing with Austin, Texas to land the plant which is expected to create about 1,800 new jobs. Samsung has also said it is looking at other potential sites in Arizona and New York.

Other potential sites have yet to disclose planned tax breaks.

Flying a thrust-vectoring rocket can be a challenge, and even more so if you stack multiple stages and a minimalist flight computer on top of it all. But [Joe Barnard] is not one to shy away from such a challenge, so he built a three stage actively guided rocket named Shreeek.

[Joe] is well known for his thrust-vectoring rockets, some of which have came within a hair’s breadth of making a perfect powered landing. Previous rockets have used larger, more complex flight computers, but for this round, he wanted to go as small and minimalist as possible. Each stage of the rocket has its own tiny 16 × 17 mm flight computer and battery. The main components are a SAM21 microcontroller running Arduino firmware, an IMU for altitude and orientation sensing, and a FET to trigger the rocket motor igniter. It also has servo outputs for thrust vector control (TVC), and motor control output for the reaction wheel on the third stage for roll control. To keep it simple he omitted a way to log flight data, a decision he later regretted. Shreeek did not have a dedicated recovery system on any of the stages, instead relying on its light weight and high drag to land intact.

None of the four launch attempts went as planned, with only the first two stages functioning correctly in the test with the best results. Thanks to the lack of recorded flight data, [Joe] had to rely on video footage alone to diagnose the problems after each launch. Even so, his experience diagnosing problems certainly proved its worth, with definitive improvements. However, we suspect that all his future flight computers will have data logging features included.

Sam Zeloof, 21 builds homemade semiconductors in his family’s garage in Flemington, N.J. (In his latest video, Zeloof refers to it casually as his “garage fab.”) The Carnegie Mellon University student has been doing it since high school, becoming a truly inspiring example of just how far a do-it-yourself spirit can take you.

And best of all, he’s documented it all in detailed blog posts and nearly 50 videos uploaded to YouTube, sharing what he’s learned for others who might follow in his footsteps.

“I hope that my success will inspire others,” Zeloof writes in an early blog post, “and help start a revolution in home chip fabrication. Let’s democratize the tools of innovation.”

And, we have Quantum Computers of course, and they’ll be radically more advanced by 2025.


Why quantum computers, if successfully built, might be what neuroscientists need to carry out large multi-scale simulations of the brain. In fact, it will likely be impossible to do so without them, or some computationally equivalent technology.

Quantum computers may be now able to employ a “call-a-friend” tactic to make sure their answers are correct.

In a study published today in Physical Review X, a team of physicists from Vienna, Innsbruck, Oxford, and Singapore designed an error-correction method that lets quantum computers check each other’s answers. While quantum computers are advancing quickly, the devices are still extremely sensitive to outside influences — like heat and cosmic rays — that make them more prone to errors that affect their computations, according to the researchers.

“In order to take full advantage of future quantum computers for critical calculations we need a way to ensure the output is correct, even if we cannot perform the calculation in question by other means,” said Chiara Greganti, a physicist at the University of Vienna.

General Motors will shut production at most of its North American plants for a week or two starting next week as the worsening chip shortage takes another bite out of its plans.

GM and other automakers had hoped the chip shortage would be mostly behind them by now. But the surge in Covid cases, especially in Southeast Asia where many of the chip manufacturers are based, has actually created a worsening problem for automakers.

Only a small handful of GM’s plants will remain in operation during the pause. Those plants make full-size SUVs and pickups, as well as some of its sports cars, such as the Camaro and Corvette. That’s because GM is prioritizing the chips it does have on hand for its most popular and profitable vehicles.

That’s teleportation for Qubits, not for humans, sadly.


AMD has proposed a patent for ‘teleportation,’ meaning things could be about to get much more efficient around here. With the incredible technological feats humanity achieves on a daily basis, and Nvidia’s Jensen going off on one last year about GeForce holodecks and time machines, it’s easy for us to slip into a headspace that lets us believe genuine human teleportation is just around the corner.

“Finally,” you sigh, mouthing the headline to yourself. “Goodbye work commute, hello popping to Japan for an authentic Ramen on my lunch break.”

Silvia Musolino defended her Ph.D. on new theoretical insights in quantum physics by studying gases at the lowest temperatures consisting of many atoms.

A practical way to study is provided by gases that have extremely low density and consist of many , often more than one hundred thousand, cooled down to temperatures close to the absolute zero. Silvia Musolino studied different types of interactions between these atoms, providing new pathways for future research on new technologies such as quantum computers.

Quantum mechanical laws govern the physics at the atomic scale and is distinguished by , which deals mainly with we can see, hear, or touch. However, even quantum mechanics influences our daily life. Transistors, which are crucial components of electronic devices, are based on quantum mechanical effects. Moreover, quantum mechanics paves the way for new technologies that may strongly impact our lives, such as quantum computers.