БЛОГ

Archive for the ‘computing’ category: Page 528

Aug 7, 2020

Scientists develop principles for the creation of an ‘acoustic diode’

Posted by in categories: computing, entertainment

In research published in Science Advances, a group led by scientists from the RIKEN Center for Emergent Matter Science (CEMS) have used the principle of magneto-rotation coupling to suppress the transmission of sound waves on the surface of a film in one direction while allowing them to travel in the other. This could lead to the development of acoustic rectifiers—devices that allow waves to propagate preferentially in one direction, with potential applications in communications technology.

Devices known as rectifiers are extremely important in technology development. The best known are electronic diodes, which are used to convert AC into DC electricity, essentially making electrification possible.

In the current study, the group examined the movement of acoustic waves—movements of sound like the propagation of earthquakes over the surface of the Earth—in a . There is interplay between the surface acoustic waves and spin waves, disturbances in magnetic fields within the material that can move through the material.

Aug 7, 2020

An electrical switch for magnetism

Posted by in categories: computing, nanotechnology, particle physics

NUS physicists have demonstrated the control of magnetism in a magnetic semiconductor via electrical means, paving the way for novel spintronic devices.

Semiconductors are the heart of information-processing technologies. In the form of a transistor, semiconductors act as a switch for , allowing switching between binary states zero and one. Magnetic materials, on the other hand, are an essential component for information storage devices. They exploit the spin degree of freedom of electrons to achieve memory functions. Magnetic semiconductors are a unique class of materials that allow control of both the electrical charge and spin, potentially enabling information processing and memory operations in a single platform. The key challenge is to control the electron spins, or magnetisation, using electric fields, in a similar way a transistor controls electrical charge. However, magnetism typically has weak dependence on electric fields in magnetic semiconductors, and the effect is often limited to .

A research team led by Prof Goki EDA from the Department of Physics and the Department of Chemistry, and the Centre for Advanced 2-D Materials, NUS, in collaboration with Prof Hidekazu KUREBAYASHI from the London Centre for Nanotechnology, University College London, discovered that the magnetism of a magnetic semiconductor, Cr2Ge2Te6, shows exceptionally strong response to applied electric fields. With electric fields applied, the material was found to exhibit ferromagnetism (a state in which electron spins spontaneously align) at temperatures up to 200 K (−73°C). At such temperatures, ferromagnetic order is normally absent in this material.

Aug 7, 2020

Researchers show how to make non-magnetic materials magnetic

Posted by in categories: computing, particle physics

O,.o well then anything could be a computer even a mushroom or a rock :3.


A complex process can modify non-magnetic oxide materials in such a way to make them magnetic. The basis for this new phenomenon is controlled layer-by-layer growth of each material. An international research team with researchers from Martin Luther University Halle-Wittenberg (MLU) reported on their unexpected findings in the journal Nature Communications.

In solid-state physics, oxide layers only a few nanometres thick are known to form a so-called two-dimensional electron gas. These thin layers, separated from one another, are transparent and electrically insulating materials. However, when one grows on top of the other, a conductive area forms under certain conditions at the interface, which has a metallic shine. “Normally this system remains non-magnetic,” says Professor Ingrid Mertig from the Institute of Physics at MLU. The research team has succeeded in controlling conditions during growth so that vacancies are created in the atomic layers near the interface. These are later filled in by other atoms from adjoining atomic layers.

Continue reading “Researchers show how to make non-magnetic materials magnetic” »

Aug 6, 2020

Eight trends accelerating the age of commercial-ready quantum computing

Posted by in categories: computing, quantum physics

1. Dark horses of QC emerge: 2020 will be the year of dark horses in the QC race. These new entrants will demonstrate dominant architectures with 100–200 individually controlled and maintained qubits, at 99.9% fidelities, with millisecond to seconds coherence times that represent 2x\u200a-3x improved qubit power, fidelity and coherence times. These dark horses, many venture-backed, will finally prove that resources and capital are not sole catalysts for a technological breakthrough in quantum computing.”,” protected”:false},” excerpt”:{“rendered”:”

Quantum computing will represent the most fundamental acceleration in computing power that we have ever encountered, leaving Moore’s law in the dust.

Aug 5, 2020

Intel’s Pohoiki Beach, a 64-Chip Neuromorphic System, Delivers Breakthrough Results in Research Tests

Posted by in categories: computing, information science, mapping, neuroscience

“We are impressed with the early results demonstrated as we scale Loihi to create more powerful neuromorphic systems. Pohoiki Beach will now be available to more than 60 ecosystem partners, who will use this specialized system to solve complex, compute-intensive problems.” –Rich Uhlig, managing director of Intel Labs

Why It’s Important: With the introduction of Pohoiki Beach, researchers can now efficiently scale up novel neural-inspired algorithms — such as sparse coding, simultaneous localization and mapping (SLAM), and path planning — that can learn and adapt based on data inputs. Pohoiki Beach represents a major milestone in Intel’s neuromorphic research, laying the foundation for Intel Labs to scale the architecture to 100 million neurons later this year.

Aug 5, 2020

Big Bounce Simulations Challenge the Big Bang

Posted by in categories: computing, cosmology

Detailed computer simulations have found that a cosmic contraction can generate features of the universe that we observe today.

Aug 5, 2020

Unusual nanoparticles could benefit the quest to build a quantum computer

Posted by in categories: biological, chemistry, climatology, computing, engineering, nanotechnology, quantum physics, sustainability

Imagine tiny crystals that “blink” like fireflies and can convert carbon dioxide, a key cause of climate change, into fuels.

A Rutgers-led team has created ultra-small dioxide crystals that exhibit unusual “blinking” behavior and may help to produce methane and other fuels, according to a study in the journal Angewandte Chemie. The crystals, also known as nanoparticles, stay charged for a long time and could benefit efforts to develop quantum computers.

“Our findings are quite important and intriguing in a number of ways, and more research is needed to understand how these exotic crystals work and to fulfill their potential,” said senior author Tewodros (Teddy) Asefa, a professor in the Department of Chemistry and Chemical Biology in the School of Arts and Sciences at Rutgers University-New Brunswick. He’s also a professor in the Department of Chemical and Biochemical Engineering in the School of Engineering.

Aug 4, 2020

Casimir force used to control and manipulate objects

Posted by in categories: computing, mathematics, quantum physics

A collaboration between researchers from the University of Western Australia and the University of California Merced has provided a new way to measure tiny forces and use them to control objects.

The research, published today in Nature Physics, was jointly led by Professor Michael Tobar, from UWA’s School of Physics, Mathematics and Computing and Chief Investigator at the Australian Research Council Centre of Excellence for Engineered Quantum Systems and Dr. Jacob Pate from the University of Merced.

Professor Tobar said that the result is a new way to manipulate and control in a non-contacting way, allowing enhanced sensitivity without adding loss.

Aug 4, 2020

Implantable transmitter provides wireless option for biomedical devices

Posted by in categories: biotech/medical, computing, mobile phones, wearables

Purdue University innovators are working on inventions to use micro-chip technology in implantable devices and other wearable products such as smart watches to improve biomedical devices, including those used to monitor people with glaucoma and heart disease.

The Purdue team developed a fully implantable radio-frequency transmitter chip for wireless sensor nodes and . The research is published in the journal IEEE Transactions on Circuits and Systems II. The transmitter chip consumes lowest amount of energy per digital bit published to date.

The transmitter works in a similar fashion to in mobile phones and , but the Purdue transmitter has an unprecedented level of miniaturization and low-energy consumption that it can be implanted into an eye to monitor pressure for a glaucoma patient or into another part of the body to measure data related to heart functions.

Aug 3, 2020

Canadian ice caps disappear, confirming 2017 scientific prediction

Posted by in categories: computing, space

The St. Patrick Bay ice caps on the Hazen Plateau of northeastern Ellesmere Island in Nunavut, Canada, have disappeared, according to NASA satellite imagery. National Snow and Ice Data Center (NSIDC) scientists and colleagues predicted via a 2017 paper in The Cryosphere that the ice caps would melt out completely within the next five years, and recent images from NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) have confirmed that this prediction was accurate.

Mark Serreze, director of NSIDC, Distinguished Professor of Geography at the University of Colorado Boulder, and lead author on the paper, first set foot on the St. Patrick Bay in 1982 as a young graduate student. He visited the ice caps with his advisor, Ray Bradley, of the University of Massachusetts.

“When I first visited those ice caps, they seemed like such a permanent fixture of the landscape,” said Serreze. “To watch them die in less than 40 years just blows me away.”