Archive for the ‘computing’ category: Page 550

Mar 6, 2017

First hint of how DNA calculators could supercharge computing

Posted by in categories: biotech/medical, computing, quantum physics

By Matt Reynolds

By making DNA endlessly change, researchers have shown how a biological computer might one day solve problems much faster than conventional computers or even quantum computers. It’s still a long way from being functional though.

The DNA-based system is an experiment in how it may be possible to make a theoretical type of computer known as a non-deterministic universal Turing machine.

Continue reading “First hint of how DNA calculators could supercharge computing” »

Mar 6, 2017

Hard drives of the future could be made of DNA

Posted by in categories: biotech/medical, computing, internet, mathematics

Our data-driven society is churning out more information than traditional storage technology can handle, so scientists are looking for a solution in Nature’s hard drive: DNA. A pair of researchers at Columbia University and the New York Genome Center recently wrote a full computer operating system, an 1895 French film, an Amazon gift card and other files into DNA strands and retrieved them without errors, according to a study published in the latest edition of Science.

There are several advantages to using DNA. It’s a lot smaller than traditional media; a single gram can fit 215,000 times more data than a one terabyte hard drive, The Atlantic notes. It’s also incredibly durable. Scientists are using DNA thousands of years old to de-extinct wooly mammoths, for example. But, until now, they’ve only unlocked a fraction of its storage capacity. Study coauthors Yaniv Erlich and Dina Zielinski were able to fit the theoretical maximum amount of information per nucleotide using a new method inspired by how movies stream across the internet.

“We mapped the bits of the files to DNA nucleotides. Then, we synthesized these nucleotides and stored the molecules in a test-tube,” Erlich explained in an interview with ResearchGate. “To retrieve the information, we sequenced the molecules. This is the basic process. To pack the information, we devised a strategy—called DNA Fountain—that uses mathematical concepts from coding theory. It was this strategy that allowed us to achieve optimal packing, which was the most challenging aspect of the study.”

Continue reading “Hard drives of the future could be made of DNA” »

Mar 6, 2017

IBM to build quantum computers, selling machines millions of times faster than anything made before

Posted by in categories: computing, quantum physics

IBM has taken its first step towards selling computers that are millions of times faster than the one you’re reading this on.

The company has set up a new division, IBM Q, that is intended to make quantum computers and sell them commercially.

Until now, quantum computers have mostly been a much hyped but long away dream. But IBM believes they are close enough to reality to start work on getting software ready for when they become commercially available.

Continue reading “IBM to build quantum computers, selling machines millions of times faster than anything made before” »

Mar 5, 2017

Are We Ready for Cyborgs? The Tech Is on Its Way

Posted by in categories: computing, cyborgs

Are we ready for cyborgs? More specifically, people with implants that enhance beyond the superficially cosmetic and into the realms of evolved beings?

Jorge Pelegrín-Borondo (Universidad de La Rioja), Eva Reinares-Lara (Universidad Rey Juan Carlos) and Cristina Olarte-Pascual (Universidad de La Rioja), in cooperation with Professor Kiyoshi Murata, from Meiji University in Tokyo, believe society is ready for this melding of (hu)man and machine.

The Spanish academics’ report “Assessing the acceptance of technological implants (the cyborg): Evidences and challenges” has just been released in the scientific journal Computers in Human Behavior. The report shows a significant proportion of those surveyed are comfortable with the coming cyborg modifications. The group are also collaborating with other academics across the world, including Professor Kiyoshi Murata, for a comparative cross-cultural study roundtable at the 2017 ETHICOMP conference this summer in Turin, Italy.

Continue reading “Are We Ready for Cyborgs? The Tech Is on Its Way” »

Mar 5, 2017

Scientists prove they can store 215 petabytes in a single gram of DNA, retrieve it error free

Posted by in categories: biotech/medical, computing

DNA storage is the wave of the future as scientists have proven they can store incredible amounts of data in just a few grams of nucleic acid, and retrieve the data countless times, error-free.

Read more

Mar 3, 2017

Researchers demonstrate new type of laser

Posted by in categories: biotech/medical, computing, quantum physics

Lasers are everywhere nowadays: Doctors use them to correct eyesight, cashiers to scan your groceries, and quantum scientist to control qubits in the future quantum computer. For most applications, the current bulky, energy-inefficient lasers are fine, but quantum scientist work at extremely low temperatures and on very small scales. For over 40 years, they have been searching for efficient and precise microwave lasers that will not disturb the very cold environment in which quantum technology works.

A team of researchers led by Leo Kouwenhoven at TU Delft has demonstrated an on-chip laser based on a fundamental property of superconductivity, the ac Josephson effect. They embedded a small section of an interrupted superconductor, a Josephson junction, in a carefully engineered on-chip cavity. Such a device opens the door to many applications in which microwave radiation with minimal dissipation is key, for example in controlling qubits in a scalable computer.

The scientists have published their work in Science on the 3rd of March.

Read more

Mar 1, 2017

Mathematician breaks down how to defend against quantum computing attacks

Posted by in categories: computing, encryption, internet, mathematics, quantum physics

The encryption codes that safeguard internet data today won’t be secure forever.

Future quantum computers may have the and algorithms to crack them.

Nathan Hamlin, instructor and director of the WSU Math Learning Center, is helping to prepare for this eventuality.

Read more

Feb 28, 2017

Researchers Have Directly Tested Two Quantum Computing Technologies

Posted by in categories: computing, particle physics, quantum physics

If you aren’t already, you’re likely soon to find yourself looking forward to the day when quantum computers will replace regular computers for every day use. The computing power of quantum computers is immense compared to what regular desktops or laptops can do. The downside is, current quantum computing technology are limited by the bulky frameworks and extreme conditions they require in order to function.

Quantum computers need specialized setups in order to sustain and keep quantum bits — the heart of quantum computing — working. These “qubits” are particles in a quantum state of superposition, which allows them to encode and transmit information as 0s and 1s simultaneously. Most computers run on binary bit systems which use either 0s or 1s. Since quantum computers can use both at the same time, they can process more information faster. That being said, Sustaining the life of qubits is particularly difficult, but researchers are investigating quantum computing studies are trying to find ways to prolong the life of qubits using various techniques.

Read more

Feb 28, 2017

Existence of a new quasiparticle demonstrated

Posted by in categories: computing, information science, particle physics

How do molecules rotate in a solvent? Answering this question is complicated, since molecular rotation is perturbed by a very large number of surrounding atoms. For a long time, large-scale computer simulations have been the main approach to model molecule-solvent interactions. However, they are extremely time consuming and sometimes infeasible. Now, Mikhail Lemeshko from the Institute of Science and Technology Austria (IST Austria) has proven that angulons—a certain type of quasiparticle he proposed two years ago—do, in fact, form when a molecule is immersed in superfluid helium. This offers a quick and simple description for rotation of molecules in solvents.

In physics, the concept of quasiparticles is used as a technique to simplify the description of many-particle systems. Namely, instead of modeling strong interactions between trillions of individual particles, one identifies building blocks of the system that are only weakly interacting with one another. These building blocks are called quasiparticles and might consist of groups of particles. For example, to describe air bubbles rising up in water from first principles, one would need to solve an enormous set of equations describing the position and momentum of each water molecule. On the other hand, the bubbles themselves can be treated as individual particles—or quasiparticles—which drastically simplifies the description of the system. As another example, consider a running horse engulfed in a cloud of dust. One can think of it as a quasiparticle consisting of the horse itself and the dust cloud moving along with it.

Read more

Feb 27, 2017

An ultra-low-power artificial synapse for neural-network computing

Posted by in categories: computing, neuroscience

(Left) Illustration of a synapse in the brain connecting two neurons. (Right) Schematic of artificial synapse (ENODe), which functions as a transistor. It consists of two thin, flexible polymer films (black) with source, drain, and gate terminals, connected by an electrolyte of salty water that permits ions to cross. A voltage pulse applied to the “presynaptic” layer (top) alters the level of oxidation in the “postsynaptic layer” (bottom), triggering current flow between source and drain. (credit: Thomas Splettstoesser/CC and Yoeri van de Burgt et al./Nature Materials)

Stanford University and Sandia National Laboratories researchers have developed an organic artificial synapse based on a new memristor (resistive memory device) design that mimics the way synapses in the brain learn. The new artificial synapse could lead to computers that better recreate the way the human brain processes information. It could also one day directly interface with the human brain.

The new artificial synapse is an electrochemical neuromorphic organic device (dubbed “ENODe”) — a mixed ionic/electronic design that is fundamentally different from existing and other proposed resistive memory devices, which are limited by noise, required high write voltage, and other factors*, the researchers note in a paper published online Feb. 20 in Nature Materials.

Continue reading “An ultra-low-power artificial synapse for neural-network computing” »