БЛОГ

Archive for the ‘computing’ category: Page 556

Oct 3, 2019

Is the World Ready for Synthetic People?

Posted by in categories: bioengineering, biotech/medical, computing, food, genetics

Drew Endy almost can’t talk fast enough to convey everything he has to say. It’s a wonderfully complex message filled with nuance, a kind of intricate puzzle box being built by a pioneer of synthetic biology who wants to fundamentally rejigger the living world.

Endy heads a research team at Stanford that is, as he puts it, building genetically encoded computers and redesigning genomes. What that means: he’s trying to engineer life forms to do useful things. Just about anything could come out of this toolkit: new foods, new materials, new medicines. So you are unlikely to find anyone who is more optimistic than he is about the potential for synthetic biology to solve big problems.

That’s what makes Endy so compelling when he worries about how the technology is being developed. Perhaps more than anyone else working in synthetic biology, Endy has tried to hold the community to account.

Oct 3, 2019

Beyond quantum supremacy: the hunt for useful quantum computers

Posted by in categories: computing, quantum physics

Some researchers have raised the possibility that, if quantum computers fail to deliver anything of use soon, a quantum winter will descend: enthusiasm will wane and funding will dry up before researchers get anywhere close to building full-scale machines. “Quantum winter is a real concern,” Preskill says. But he remains upbeat, because the slow progress has forced researchers to adjust their focus and see whether the devices they already have might be able to do something interesting in the near future.


Researchers search for ways to put today’s small noisy quantum systems to work. The hunt for useful quantum computers.

Oct 2, 2019

Former Google CEO Eric Schmidt believes biology is the next frontier in computing

Posted by in categories: biological, computing

Eric Schmidt told a conference crowd that Silicon Valley is obsessed with biology because it’s the perfect “marriage” with tech right now.

Oct 2, 2019

Quantum gold rush: the private funding pouring into quantum start-ups

Posted by in categories: computing, quantum physics

A Nature analysis explores the investors betting on quantum technology. The science is immature and a multi-purpose quantum computer doesn’t yet exist. But that isn’t stopping investors pouring cash into quantum start-ups.

Oct 1, 2019

Twist Bioscience Enhances DNA Storage Capabilities Through Agreement With Imagene SA

Posted by in categories: biotech/medical, business, computing

SAN FRANCISCO—( )—Twist Bioscience Corporation (NASDAQ: TWST), a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, today announced that it has entered into an agreement with Imagene SA, where Imagene will provide Twist with an encapsulation service to store DNA through its DNAshell® technology to store digital data encoded in DNA for thousands of years.

“We are happy to be partnering with Twist and providing them with our disruptive DNAshell® technology to safely store DNA with digital data encoded.” Tweet this

“This agreement with Imagene provides the next step in the continuum on DNA digital data storage and fits within our strategy to cover all aspects of the process efficiently to enable the development of DNA as a digital storage medium,” commented Emily Leproust, Ph.D., CEO of Twist Bioscience. “We believe the DNAshell ® technology allows us to encapsulate the DNA-stored digital data securely, protecting it for eternity from any elements including radiation, and eliminating the need for continued copying of digital data due to degradation experienced in other forms of storage today.”

Oct 1, 2019

Non-abelian Aharonov-Bohm experiment done at long last

Posted by in categories: computing, information science, particle physics, quantum physics

For the first time, physicists in the US have confirmed a decades-old theory regarding the breaking of time-reversal symmetry in gauge fields. Marin Soljacic at the Massachusetts Institute of Technology and an international team of researchers have made this first demonstration of the “non-Abelian Aharonov-Bohm effect” in two optics experiments. With improvements, their techniques could find use in optoelectronics and fault-tolerant quantum computers.

First emerging in Maxwell’s famous equations for classical electrodynamics, a gauge theory is a description of the physics of fields. Gauge theories have since become an important part of physicists’ descriptions of the dynamics of elementary particles – notably the theory of quantum electrodynamics.

A salient feature of a gauge theory is that the physics it describes does not change when certain transformations are made to the underlying equations describing the system. An example is the addition of a constant scalar potential or a “curl-free” vector potential to Maxwell’s equations. Mathematically, this does not change the electric and magnetic fields that act on a charged particle such as an electron – and therefore the behaviour of the electron – so Maxwell’s theory is gauge invariant.

Oct 1, 2019

Here’s how blockchain could stop corrupt officials from stealing school lunches

Posted by in categories: bitcoin, computing, economics, governance, security

The World Economic Forum has partnered with the Inter-American Development Bank and the Colombian Inspector General’s Office to explore how distributed ledger technology can improve public transparency and integrity in school meal procurement.

The project, which is taking place this year, is multi-faceted and includes a software implementation with blockchain technology for the selection of school food vendors. It is co-designed with several partners from academia, the IT industry, and the non-profit world, including economists and computer scientists from the blockchain economics and governance consulting firm Prysm Group, the National University of Colombia, U.C. Berkeley, and the blockchain security firm Quantstamp.

Oct 1, 2019

This new wearable tech is closing the gap between humans and cyborgs

Posted by in categories: computing, cyborgs, engineering, wearables

A professor at the University of Chicago believes he is on his way to creating a wearable for market that will manipulate your muscles with electrical impulses to cause you to move involuntarily so you can perform a physical task you otherwise didn’t know how to do, like playing a musical instrument or operating machinery.

Dr. Pedro Lopes, who heads the Human Computer Integration lab at the university, is all about integrating humans and computers, closing the gap between human and machine. His team, which focuses on engineering the next generation of wearable and haptic devices, is exploring the endless possibilities if wearables could intentionally share parts of our body for input and output, allowing computers to be more directly interwoven in our bodily senses and actuators.

Lopes’ vision: a wearable EMS device that would look like a sleeve and be able to send electrical impulses in the right timing and in the right fashion to make a user’s muscles move involuntarily to perform a physical task. EMS stands for electrical muscle stimulation.

Oct 1, 2019

Moore’s Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What’s Next

Posted by in categories: computing, neuroscience, physics

“Dark silicon” sounds like a magical artifact out of a fantasy novel. In reality, it’s one branch of a three-headed beast that foretells the end of advances in computation.

Ok—that might be too dramatic. But the looming problems in silicon-based computer chips are very real. Although computational power has exploded exponentially in the past five decades, we’ve begun hitting some intractable limits in further growth, both in terms of physics and economics.

Moore’s Law is dying. And chipmakers around the globe are asking, now what?

Sep 30, 2019

A ten-qubit solid-state spin register with remarkable quantum memory

Posted by in categories: computing, particle physics, quantum physics

In years to come, quantum computers and quantum networks might be able to tackle tasks that are inaccessible to traditional computer systems. For instance, they could be used to simulate complex matter or enable fundamentally secure communications.

The elementary building blocks of quantum information systems are known as qubits. For to become a tangible reality, researchers will need to identify strategies to control many qubits with very high precision rates.

Spins of individual particles in solids, such as electrons and nuclei have recently shown great promise for the development of quantum networks. While some researchers were able to demonstrate an elementary control of these qubits, so far, no one has reported entangled quantum states containing more than three spins.