БЛОГ

Archive for the ‘computing’ category: Page 609

Jan 19, 2017

Manufacturing could be revolutionized by synthetic biology

Posted by in categories: bioengineering, biotech/medical, computing

The emerging discipline of synthetic biology sits at the crux of the intersection between design, biology, computing and manufacturing…[I]t appears more and more probable that we are on the cusp of a paradigm shift, where…biology is adopted as the next big manufacturing technology.

[The objective of Ginkgo Bioworks, an “organism design” company,] is to take synthetic biology techniques to an industrial level, machine-injecting DNA sequences into baker’s yeast creating “living organism” products like perfumes, sweeteners, cosmetics and other things that are typically extracted from plants.

There are two main potential benefits from the technology. Replacing consumption of finite natural resources with lab-grown alternatives, and the potential to replicate actual genes to produce authentic fragrances replacing chemical synthetic scented products that currently dominate the marketplace.

Continue reading “Manufacturing could be revolutionized by synthetic biology” »

Jan 18, 2017

Memristor can do multistate processing as well as nonvolatile memory

Posted by in categories: computing, nanotechnology, neuroscience, quantum physics

Nice; ReRam with multi-state processing and reliable storage.


Short of full blown molecular computers or universal quantum computers or optical computers memristors have the most potential for a hardware change to dramatically boost the power and capabilities of computers. The boost to computer power could be nearly a million times by fully leveraging memristors. It would likely be more like a thousand times with more near to mid term usage of memristors.

Memristors (aka ReRAM) could become computer memory that is over 10 times denser than Flash or DRAM in two dimensions. Memristors like flash would be nonvolatile memory that would not need power for retain memory. Memristors are created from nanowire lattices which could be stacked in three dimensions. Memristors have also previously been shown to behave like brain synapses which could be used for computer architectures that emulate the human brain for neuromorphic computing. Now there is work on multistate memristors that perform computation. This means that eventually processing and memory could be tightly integrated.

Continue reading “Memristor can do multistate processing as well as nonvolatile memory” »

Jan 18, 2017

Biological Computing is Getting Closer to Reality

Posted by in categories: biological, computing

My dream is coming true — Biocomputing with QC technology.


University of Maryland exploits redox molecules in E. coli to instruct the bacteria to swim or fluoresce based on electronic stimuli.

Read more

Jan 17, 2017

Microsoft wants to make conversing with your computer the new normal

Posted by in categories: computing, mobile phones

In a mobile-first, cloud-first world, conversing with a computer through your smartphone may be the best way to communicate. Microsoft’s research is heading that way.

Read more

Jan 17, 2017

Human organs-on-chips: Harvard develops microchips lined with living cells to revolutionise medicine

Posted by in categories: biotech/medical, computing, engineering, neuroscience

Biological engineers at Harvard University’s Wyss Institute for Biologically Inspired Engineering have invented a microchip that can be lined with living human cells in order to revolutionise medicine, particularly relating to drug testing, disease modelling and personalised medicine.

The ‘human organs-on-chip’ is a microchip made from a clear flexible polymer that contains hollow microfluidic channels that are lined with living human cells, together with an interface that lines the interior surface of blood vessels and lymphatic vessels, known as an endothelium.

The idea is that the microchip can emulate the microarchitecture and functions of multiple human organs such as the lungs, kidneys, skin, bone marrow, intestines and blood-brain barrier. And if you were able to do this, you could then test out drugs and study how diseases affect the body without having to endanger human patients, or waste precious organs needed for transplants.

Continue reading “Human organs-on-chips: Harvard develops microchips lined with living cells to revolutionise medicine” »

Jan 17, 2017

Cancer agency hacked for data won’t pay ransom

Posted by in categories: biotech/medical, bitcoin, computing

Pathetic. This is truly a new low for Ransomware hackers.


MUNCIE — An Indiana cancer services agency says it will replace and rebuild its data after a computer hack demanding a ransom.

Cancer Services of East Central Indiana-Little Red Door in Muncie says it was hacked Jan. 11 and the hackers demanded a ransom of 50 bitcoins, or about $43,000, for access to its data.

Continue reading “Cancer agency hacked for data won’t pay ransom” »

Jan 16, 2017

Could you recruit a ‘mind reader’ for Facebook?

Posted by in categories: computing, neuroscience

Many who worked closely with me at Microsoft use to say I had a Crystal ball and was psychic; maybe I have met my match for a career — LOL.


A number of job adverts suggest that Facebook is taking social networking to a different level of science fiction.

The social networking giant has advertised for a Haptics Engineer, a Neural Imaging Engineer, a Signal Processing Engineer and a Brain-Computer Interface (BCI) Engineer – leading people to think Facebook is working on mind reading technology.

Continue reading “Could you recruit a ‘mind reader’ for Facebook?” »

Jan 15, 2017

What Do Single Neurons Know

Posted by in categories: computing, neuroscience

But, the larger question remains as to how these individual dendrites and neuron outputs are used by the circuit and the brain as a whole. These findings are considerably different than sequences needing a group of neurons working in order and in a circuit. Even more unusual is the fact that (even young childrens’) brains are able to analyze and respond to information that is, in fact, so complex that the most advanced super computers cannot. Can individual cells do this as well?

Another new set of research shows that in a monkey brain, these responses of individual neurons are correlated somewhat with the final decision of the animal. This research used very limited visual information and showed that the final decisions of the animal using billions of neurons was perhaps relevant even to this small amount of information input given to individual cells.

It could be that the local neuron responded to the decision that was made by the larger circuits and brain. But, it doesn’t answer the question as to how the individual neuron relates to the brain.

Read more

Jan 15, 2017

Now Quantum Computers Can Send Information Using a Single Particle of Light

Posted by in categories: computing, particle physics, quantum physics

Physicists at Princeton University have revealed a device they’ve created that will allow a single electron to transfer its quantum information to a photon. This is a revolutionary breakthrough for the team as it gets them one step closer to producing the ultimate quantum computer. The device is the result of five years worth of research and could accelerate the world of quantum computing no end.

Read more

Jan 14, 2017

Seeing the quantum future… literally

Posted by in categories: computing, quantum physics

Scientists at the University of Sydney have demonstrated the ability to “see” the future of quantum systems, and used that knowledge to preempt their demise, in a major achievement that could help bring the strange and powerful world of quantum technology closer to reality.

The applications of quantum-enabled technologies are compelling and already demonstrating significant impacts — especially in the realm of sensing and metrology. And the potential to build exceptionally powerful quantum computers using quantum bits, or qubits, is driving investment from the world’s largest companies.

However a significant obstacle to building reliable quantum technologies has been the randomisation of by their environments, or decoherence, which effectively destroys the useful quantum character.

Read more