БЛОГ

Archive for the ‘computing’ category: Page 612

Jul 15, 2019

Neurotech Salon lets talk Brain Computer Interfaces, Neuroscience, and Code

Posted by in categories: biotech/medical, computing, neuroscience

Lets meet to talk brain computer interfaces, neuroscience, collaboration and coding. Lets pitch projects to one another, join existing projects, write code together, build new brain computer interfaces and more.

Thinking about past NeurotechX SF meetups I think I like the Salon aspect the most, where people just meet up to talk about neuroscience, brain computer interfaces and coding. So I’m renaming this event series to “Neurotech Salon”, it’s every two weeks in San Francisco at the Red Victorian! Get ready to meet interesting people to talk about things like the future of brain machine interfaces, you can pitch your project, or perhaps join someone elses project, you can talk about your work in developing software, hardware, or your work in medical research, or talk about your studies as an academic.

Confirm your RSVP by making a charitable donation to a real charity like this one here https://www.facebook.com/donate/837355799969191/ in the amount of $5 dollars or more. If you feel like you can’t afford it just skip a meal, and take the money you would have paid for that meal and apply it to this event.

Jul 15, 2019

Path to Million Qubit Quantum Computers Using Atoms and Lasers

Posted by in categories: computing, particle physics, quantum physics

Atom Computing is building quantum computers using individually controlled atoms.

As one of the world’s leading researchers in atomic clocks and neutral atoms, Benjamin Bloom (co-founder of Atom Computing) built the world’s fastest atomic clock, and it is considered the most precise and accurate measurement ever performed.

Ben has shown that neutral atoms could be more scalable, and could build a stable solution to create and maintain controlled quantum states. He used his expertise to lead efforts at Intel on their 10nm semiconductor chip, and then to lead research and development of the first cloud-accessible quantum computer at Rigetti.

Jul 15, 2019

Researchers develop computer model of ferrofluid motion

Posted by in categories: biotech/medical, computing, nanotechnology

Ferrofluids, with their mesmeric display of shape-shifting spikes, are a favorite exhibit in science shows. These eye-catching examples of magnetic fields in action could become even more dramatic through computational work that captures their motion.

A KAUST research team has now developed a computer model of motion that could be used to design even grander ferrofluid displays. The work is a stepping stone to using to inform the use of ferrofluids in broad range of practical applications, such as medicine, acoustics, radar-absorbing materials and nanoelectronics.

Ferrofluids were developed by NASA in the 1960s as a way to pump fuels in low gravity. They comprise nanoscale magnetic particles of iron-laden compounds suspended in a liquid. In the absence of a magnetic , ferrofluids possess a perfectly smooth surface. But when a magnet is brought close to the ferrofluid, the particles rapidly align with the magnetic field, forming the characteristic spiky appearance. If a magnetic object is placed in the ferrofluid, the spikes will even climb the object before cascading back down.

Jul 15, 2019

Intel’s Neuromorphic System Hits 8 Million Neurons, 100 Million Coming by 2020

Posted by in categories: computing, neuroscience

Researchers can use the 64-chip Pohoiki Beach system to make systems that learn and see the world more like humans.

Jul 15, 2019

Physicists Reverse Time for Tiny Particles Inside a Quantum Computer

Posted by in categories: computing, mathematics, particle physics, quantum physics

Time goes in one direction: forward. Little boys become old men but not vice versa; teacups shatter but never spontaneously reassemble. This cruel and immutable property of the universe, called the “arrow of time,” is fundamentally a consequence of the second law of thermodynamics, which dictates that systems will always tend to become more disordered over time. But recently, researchers from the U.S. and Russia have bent that arrow just a bit — at least for subatomic particles.

In the new study, published Tuesday (Mar. 12) in the journal Scientific Reports, researchers manipulated the arrow of time using a very tiny quantum computer made of two quantum particles, known as qubits, that performed calculations. [Twisted Physics: 7 Mind-Blowing Findings]

At the subatomic scale, where the odd rules of quantum mechanics hold sway, physicists describe the state of systems through a mathematical construct called a wave function. This function is an expression of all the possible states the system could be in — even, in the case of a particle, all the possible locations it could be in — and the probability of the system being in any of those states at any given time. Generally, as time passes, wave functions spread out; a particle’s possible location can be farther away if you wait an hour than if you wait 5 minutes.

Jul 15, 2019

How to Turn Science Fiction into Science Fact

Posted by in categories: computing, space

George Church and Ramez Naam on the limitations of evolution, the power of matchmaking, and why we should send single-cell computers into deep space.

Jul 15, 2019

Intel has packed 8 million digital neurons onto a brain-like computer

Posted by in categories: computing, neuroscience

With 64 Loihi processors, Intel packs 8 million digital neurons into one computer.

Jul 14, 2019

New Sims Simulations

Posted by in categories: computing, entertainment

Play some video games.


By converting our sims to HTML5, we make them seamlessly available across platforms and devices. Whether you have laptops, iPads, chromebooks, or BYOD, your favorite PhET sims are always right at your fingertips.

Continue reading “New Sims Simulations” »

Jul 14, 2019

Scientists Just Unveiled The First-Ever Photo of Quantum Entanglement

Posted by in categories: computing, particle physics, quantum physics

In an incredible first, scientists have captured the world’s first actual photo of quantum entanglement — a phenomenon so strange, physicist Albert Einstein famously described it as ‘spooky action at a distance’.

The image was captured by physicists at the University of Glasgow in Scotland, and it’s so breathtaking we can’t stop staring.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image is the first time we’ve seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Jul 14, 2019

Non-Linear Junction Detectors (NLJDs)

Posted by in categories: computing, mobile phones

The ORION™ Non-Linear Junction Detector (NLJD) detects the presence of electronics, regardless of whether they are radiating, hard wired, or even turned off. Electronics containing semi-conductor properties return a harmonic signature the ORION NLJD can detect when radiated with RF energy. An NLJD detects physical properties, and not energy emissions. Therefore, devices that contain circuit boards and their components, like cell phones, video cameras, and microphones can be detected by the ORION NLJD.

How does a non-linear junction detector work?

The NLJD antenna head is a transceiver (transmitter and receiver) that radiates a digital spread spectrum signal to determine the presence of electronic components. When the energy encounters semi-conductor junctions (diodes, transistors, circuit board connections, etc.), a harmonic signal returns to the receiver. The receiver measures the strength of the harmonic signal and distinguishes between 2nd or 3rd harmonics. When a stronger 2nd harmonic is represented on the display in red, it indicates an electronic junction has been detected. In this way, a hand-held ORION is used to sweep walls, objects, containers, furniture, and most types of surfaces to look for hidden electronics, regardless of whether the electronic device is turned on.