Toggle light / dark theme

Physicists Build Mathematical “Playground” To Study Quantum Information Theory

In a new study from Skoltech and the University of Kentucky, researchers found a new connection between quantum information and quantum field theory. This work attests to the growing role of quantum information theory across various areas of physics. The paper was published in the journal Physical Review Letters.

Quantum information plays an increasingly important role as an organizing principle connecting various branches of physics. In particular, the theory of quantum error correction, which describes how to protect and recover information in quantum computers and other complex interacting systems, has become one of the building blocks of the modern understanding of quantum gravity.

“Normally, information stored in physical systems is localized. Say, a computer file occupies a particular small area of the hard drive. By “error” we mean any unforeseen or undesired interaction which scrambles information over an extended area. In our example, pieces of the computer file would be scattered over different areas of the hard drive. Error correcting codes are mathematical protocols that allow collecting these pieces together to recover the original information. They are in heavy use in data storage and communication systems. Quantum error correcting codes play a similar role in cases when the quantum nature of the physical system is important,” Anatoly Dymarsky, Associate Professor at the Skoltech Center for Energy Science and Technology (CEST), explains.

Now everyone can build battery-free electronic devices

Last year, computer engineers from Northwestern University and Delft University of Technology (TU Delft) introduced the world’s first battery-free Game Boy, which harvests both solar energy and the user’s kinetic energy from button mashing to power an unlimited lifetime of game play.

The same team now introduces a new platform that enables makers, hobbyists and novice programmers to build their own battery-free electronic devices that run with intermittent, harvested energy.

Called BFree, the system includes energy-harvesting hardware (the BFree Shield) and a power-failure-resistant version of Python, one of the most accessible and most used programming languages. All the user needs is a basic understanding of Python in order to quickly and easily turn any do-it-yourself (DIY) into a battery-free version. With this technology, novice programmers can now turn their DIY battery-powered motion sensor, for example, into a solar-powered sensor with an infinite lifetime.

Consciousness & Information | Part II of the Documentary Consciousness: Evolution of the Mind

Quantum physics is directly linked to consciousness: Observations not just change what is measured, they create it… Here’s the next episode of my new documentary Consciousness: Evolution of the Mind (2021), Part II: CONSCIOUSNESS & INFORMATION

*Subscribe to our YT channel to watch the rest of documentary (to be released in parts): https://youtube.com/c/EcstadelicMedia.

**Watch the documentary in its entirety on Vimeo ($0.99/rent; $1.99/buy): https://vimeo.com/ondemand/339083

***Join Consciousness: Evolution of the Mind public forum for news and discussions (Facebook group of 6K+ members): https://www.facebook.com/groups/consciousness.evolution.mind.

#Consciousness #Evolution #Mind #Documentary #Film


AMD CEO Lisa Su says chip shortage likely to end next year

Chipmakers are still catching up to demand following severe supply chain bottlenecks created by the pandemic. But manufacturing plants that were planned last year will likely start producing chips in the coming months, helping to alleviate shortages for PC parts and other microchips, Su said.

“We’ve always gone through cycles of ups and downs, where demand has exceeded supply, or vice versa,” Su said at the Code Conference in Beverly Hills, California. “This time, it’s different.”

The improvements will be gradual as more manufacturing capacity becomes available, Su said.

Vaccination slows antimicrobial resistance

A new computer model demonstrates that vaccinations have impacts well beyond just preventing disease and death: they can also slow the spread of antimicrobial resistance.

Pneumococcal diseases—which include illnesses ranging from inner ear infections to pneumonia and meningitis—are a leading cause of death globally among children under five. While there are effective vaccines against pneumococcal diseases, access is still a challenge for populations in low-income—and some middle income—countries. And antimicrobial resistance to the antibiotics commonly used to treat these infections is a growing problem.

“We wanted to the value of vaccinating—not only to show that vaccination reduces death or disability from these diseases, but also to quantify whether vaccination can slow antimicrobial resistance,” says Andrew Stringer, an assistant professor of veterinary and global health at NC State.

Researchers Have Found A New Way To Control Magnets

Researchers at MIT have developed a way of quickly changing the magnetic polarity of a ferrimagnet 180 degrees, using just a small applied voltage. According to the researchers, the discovery could herald a new era of ferrimagnetic logic and data storage systems.

The findings were published in the journal Nature Nanotechnology in a paper co-authored by postdoctoral researcher Mantao Huang, MIT professor of materials science and technology Geoffrey Beach, and professor of nuclear science and technology Bilge Yildiz, as well as 15 other researchers from MIT and other institutions in Minnesota, Germany, Spain, and Korea.

The majority of magnets we come across are of “ferromagnetic” materials. The atoms in these materials are oriented in the same direction with their north-south magnet axes; thus, their combined strength is strong enough to create attraction. As a result, these materials are often used in the modern high-tech environment.

/* */