Toggle light / dark theme

Outgrowing Einstein: A critical mass of cosmological discrepancies makes us reinterpret relativity

In search for a unifying quantum gravity theory that would reconcile general relativity with quantum theory, it turns out quantum theory is more fundamental, after all. Quantum mechanical principles, some physicists argue, apply to all of reality (not only the realm of ultra-tiny), and numerous experiments confirm that assumption. After a century of Einsteinian relativistic physics gone unchallenged, a new kid of the block, Computational Physics, one of the frontrunners for quantum gravity, states that spacetime is a flat-out illusion and that what we call physical reality is actually a construct of information within [quantum neural] networks of conscious agents. In light of the physics of information, computational physicists eye a new theory as an “It from Qubit” offspring, necessarily incorporating consciousness in the new theoretic models and deeming spacetime, mass-energy as well as gravity emergent from information processing.

In fact, I expand on foundations of such new physics of information, also referred to as [Quantum] Computational Physics, Quantum Informatics, Digital Physics, and Pancomputationalism, in my recent book The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution. The Cybernetic Theory of Mind I’m currently developing is based on reversible quantum computing and projective geometry at large. This ontological model, a “theory of everything” of mine, agrees with certain quantum gravity contenders, such as M-Theory on fractal dimensionality and Emergence Theory on the code-theoretic ontology, but admittedly goes beyond all current models by treating space-time, mass-energy and gravity as emergent from information processing within a holographic, multidimensional matrix with the Omega Singularity as the source.

There’s plenty of cosmological anomalies of late that make us question the traditional interpretation of relativity. First off, what Albert Einstein (1879 — 1955) himself called “the biggest blunder” of his scientific career – t he rate of the expansion of our Universe, or the Hubble constant – is the subject of a very important discrepancy: Its value changes based how scientists try to measure it. New results from the Hubble Space Telescope have now “raised the discrepancy beyond a plausible level of chance,” according to one of the latest papers published in the Astrophysical Journal. We are stumbling more often on all kinds of discrepancies in relativistic physics and the standard cosmological model. Not only the Hubble constant is “constantly” called into question but even the speed of light, if measured by different methods, and on which Einsteinian theories are based upon, shows such discrepancies and turns out not really “constant.”

New record distance for quantum communications

Toshiba’s Cambridge Research Laboratory has achieved quantum communications over optical fibres exceeding 600 km in length, three times further than the previous world record distance.

The breakthrough will enable long distance, quantum-secured information transfer between metropolitan areas and is a major advance towards building a future Quantum Internet.

The term “Quantum Internet” describes a global network of quantum computers, connected by long distance quantum communication links. This technology will improve the current Internet by offering several major benefits – such as the ultra-fast solving of complex optimisation problems in the cloud, a more accurate global timing system, and ultra-secure communications. Personal data, medical records, bank details, and other information will be physically impossible to intercept by hackers. Several large government initiatives to build a Quantum Internet have been announced in China, the EU and the USA.

Qualcomm reportedly offers to invest in Arm as regulators threaten to block Nvidias $40 billion acquisition

U.S. chip goliath Qualcomm has said it is open to the idea of investing in U.K. chip designer Arm if the company’s $40 billion sale to Nvidia is blocked by regulators, according to The Telegraph newspaper.

Qualcomm’s incoming CEO, Cristiano Amon, said Qualcomm would be willing to buy a stake in Arm alongside other industry investors if SoftBank, Arm’s current owner, listed the company on the stock market instead of selling it to Nvidia, the newspaper reported Sunday.

“If Arm has an independent future, I think you will find there is a lot of interest from a lot of the companies within the ecosystem, including Qualcomm, to invest in Arm,” Amon said. “If it moves out of SoftBank and it goes into a process of becoming a publicly-traded company, [with] a consortium of companies that invest, including many of its customers, I think those are great possibilities.”

New quantum entanglement verification method cuts through the noise

“Conditional witnessing” technique makes many-body entangled states easier to measure.


Quantum error correction – a crucial ingredient in bringing quantum computers into the mainstream – relies on sharing entanglement between many particles at once. Thanks to researchers in the UK, Spain and Germany, measuring those entangled states just got a lot easier. The new measurement procedure, which the researchers term “conditional witnessing”, is more robust to noise than previous techniques and minimizes the number of measurements required, making it a valuable method for testing imperfect real-life quantum systems.

Quantum computers run their algorithms on quantum bits, or qubits. These physical two-level quantum systems play an analogous role to classical bits, except that instead of being restricted to just “0” or “1” states, a single qubit can be in any combination of the two. This extra information capacity, combined with the ability to manipulate quantum entanglement between qubits (thus allowing multiple calculations to be performed simultaneously), is a key advantage of quantum computers.

The problem with qubits

However, qubits are fragile. Virtually any interaction with their environment can cause them to collapse like a house of cards and lose their quantum correlations – a process called decoherence. If this happens before an algorithm finishes running, the result is a mess, not an answer. (You would not get much work done on a laptop that had to restart every second.) In general, the more qubits a quantum computer has, the harder they are to keep quantum; even today’s most advanced quantum processors still have fewer than 100 physical qubits.

Nano Optics Breakthrough: Researchers Observe Sound-Light Pulses in 2D Materials for the First Time

Using an ultrafast transmission electron microscope, researchers from the Technion – Israel Institute of Technology have, for the first time, recorded the propagation of combined sound and light waves in atomically thin materials.

The experiments were performed in the Robert and Ruth Magid Electron Beam Quantum Dynamics Laboratory headed by Professor Ido Kaminer, of the Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and the Solid State Institute.

Single-layer materials, alternatively known as 2D materials, are in themselves novel materials, solids consisting of a single layer of atoms. Graphene, the first 2D material discovered, was isolated for the first time in 2004, an achievement that garnered the 2010 Nobel Prize. Now, for the first time, Technion scientists show how pulses of light move inside these materials. Their findings, “Spatiotemporal Imaging of 2D Polariton Wavepacket Dynamics Using Free Electrons,” were published in Science following great interest by many scientists.

Samsung researchers announce the feasibility of commercial stretchable devices

With the established success of flexible computer screen displays, many users are wondering how display technology will advance next. So far, free-form displays have grown popular as a next-generation product that offers both portability and high-resolution visuals.

While this technology is still quite new, a wealth of research already exists into the stretchable displays that make up free form displays, products that can stretch into any direction like rubber.

On June 4, 2021, research at Samsung appeared in the well-known journal Science Advances discussing a technology that bypasses the limitations of stretchable devices. The associated experiment showed stable performance even when the was significantly elongated. As these products can already be used in existing semiconductor processes, Samsung researchers have high hopes about what this could mean for the commercialization and salability of stretchable devices.

Yes, Scientists Built the Worlds Smallest Implantable Chip. But Dont Freak Out

Bill Gates isn’t going to use it to track you.


Your next doctor’s appointment could soon become much more informative thanks to new microchips the size of dust mites, only visible beneath a microscope.

Picture this: Your surgeon wants to continuously monitor your lungs prior to a procedure to ensure your respiratory system is strong enough to deal with anesthesia. So, a technician uses a hypodermic needle to inject a few small microchips into your body. Then, they use an ultrasound machine to communicate with the chips, which show your lungs are primed for the operation. Your subsequent surgery is a breeze.

This is a vision of the future with the world’s smallest single-chip system, a complete electronic circuit that technicians could one day inject directly into the body to monitor and diagnose certain health conditions.

/* */