Toggle light / dark theme

The field has narrowed in the race to protect sensitive electronic information from the threat of quantum computers, which one day could render many of our current encryption methods obsolete.

As the latest step in its program to develop effective defenses, the National Institute of Standards and Technology (NIST) has winnowed the group of potential encryption tools—known as cryptographic algorithms—down to a bracket of 26. These algorithms are the ones NIST mathematicians and computer scientists consider to be the strongest candidates submitted to its Post-Quantum Cryptography Standardization project, whose goal is to create a set of standards for protecting electronic information from attack by the computers of both tomorrow and today.

“These 26 algorithms are the ones we are considering for potential standardization, and for the next 12 months we are requesting that the cryptography community focus on analyzing their performance,” said NIST mathematician Dustin Moody. “We want to get better data on how they will perform in the real world.”

To work, quantum computers have to be freezing cold, which makes connecting them to one another a challenge.

Now, for the first time, a team of researchers has found a way to create entangled radiation using a physical object — a move that could help connect future quantum computer systems to the outside world.

“What we have built is a prototype for a quantum link,” Shabir Barzanjeh, the engineer who led the project, said in a press release. “The oscillator that we have built has brought us one step closer to a quantum internet.”

One of the essential features required for the realization of a quantum computer is quantum entanglement. A team of physicists from the University of Vienna and the Austrian Academy of Sciences (ÖAW) introduces a novel technique to detect entanglement even in large-scale quantum systems with unprecedented efficiency. This brings scientists one step closer to the implementation of reliable quantum computation. The new results are of direct relevance for future generations of quantum devices and are published in the current issue of the journal Nature Physics.

Quantum computation has been drawing the attention of many scientists because of its potential to outperform the capabilities of standard computers for certain tasks. For the realization of a quantum computer, one of the most essential features is quantum entanglement. This describes an effect in which several quantum particles are interconnected in a complex way. If one of the entangled particles is influenced by an external measurement, the state of the other entangled particle changes as well, no matter how far apart they may be from one another. Many scientists are developing new techniques to verify the presence of this essential quantum feature in quantum systems. Efficient methods have been tested for systems containing only a few qubits, the basic units of quantum information. However, the physical implementation of a quantum computer would involve much larger quantum systems.

A hacker used a tiny Raspberry Pi computer to infiltrate NASA’s Jet Propulsion Laboratory network, stealing sensitive data and forcing the temporary disconnection of space-flight systems, the agency has revealed.

The April 2018 attack went undetected for nearly a year, according to an audit issued on June 18, and an investigation is still underway to find the culprit.

A Raspberry Pi is a credit-card sized device sold for about $35 that plugs into home televisions and is used mainly to teach coding to children and promote computing in developing countries.

Organic solid-state lasers are essential for photonic applications, but current-driven lasers are a great challenge to develop in applied physics and materials science. While it is possible to create charge transfer complexes (i.electron-donor-acceptor complexes among two/more molecules or across a large molecule) with p-/n- type organic semiconductors in electrically pumped lasers, the existing difficulties arise from nonradiative loss due to the delocalized states of charge transfer (CT). In a recent report, Kang Wang and a team of researchers in the departments of chemistry, molecular nanostructure and nanotechnology in China demonstrated the enduring action of CT complexes by exciton funneling in p-type organic microcrystals with n-type doping.

They surrounded locally formed CT complexes containing narrow bandgaps with hosts of high levels of energy to behave as artificial light-harvesting systems. They captured the resulting excitation light energy using hosts to deliver to the CT complexes for their function as exciton funnels in order to benefit lasing actions. Wang et al. expect the to offer in depth understanding of exciton funneling in light-harvesting systems to develop high-performance organic lasing devices. The new results are now available on Science Advances.

Organic semiconductor lasers that function across the full visible spectrum are of increasing interest due to their practical applications from multiband communication to full-color laser displays. Although they are challenging to attain, electrically pumped organic lasers can advance the existing laser technology to rival organic light-emitting diodes.

The high resolution and wealth of data provided by an experiment at Diamond can lead to unexpected discoveries. The piezoelectric properties of the ceramic perovskite PMN-PT (0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3) are widely used in commercial actuators, where the strain that is generated varies continuously with applied voltage. However, if the applied voltage is cycled appropriately then there are discontinuous changes of strain. These discontinuous changes can be used to drive magnetic switching in a thin overlying ferromagnet, permitting magnetic information to be written electrically. An international team of researchers used beamline I06 to investigate a ferromagnetic film of nickel when it served as a sensitive strain gauge for single-crystal PMN-PTheir initial interpretation of the results suggested that ferroelectric domain switching rotated the magnetic domains in the film by the expected angle of 90°, but a closer examination revealed the true picture to be more complex.

Their work, recently published in Nature Materials, shows that the ferroelectric domain switching rotated the in the film by considerably less than 90° due to an accompanying shear strain. The findings offer both a challenge and an opportunity for the design of next-generation data storage devices, and will surely be relevant if the work is extended to explore the electrically driven manipulation of more complex magnetic textures.

Some develop electrical charge in response to an applied . This piezoelectric effect means that certain crystals can be used to convert into electricity or vice-versa, and piezoelectric materials are used in a variety of technologies, including the automatic focusing of cameras in mobile phones. For these applications, the strain varies continuously with applied voltage, but cycling the applied voltage can lead to discontinuous changes of strain due to ferroelectric domain switching. These discontinuous changes in strain can be used to drive magnetic switching in a thin ferromagment film, such that data can be written electrically, and stored magnetically.

The next five years will mark a dramatic enterprise shift toward the edge of networks, where emerging technologies can be harnessed to radically improve user experiences, transform business models, and generate vast revenue opportunities, according to a new book by Fast Future in collaboration with Aruba, a Hewlett Packard Enterprise company.

Opportunity at the Edge: Change, Challenge, and Transformation on the Path to 2025, developed by Fast Future in collaboration with Aruba, reports that edge technologies – those which process and analyze user data where people connect to a network – will revolutionize corporate strategies, create more dynamic, responsive, and personalized customer and employee experiences, enable powerful business and revenue models, and even catalyze the growth of entirely new industries. To unlock these opportunities, the book argues that enterprises must embrace fundamental change, engaging in widespread strategic, structural, and leadership transformation.

Morten Illum, VP EMEA at Aruba, comments: “The findings in this book highlight the vast commercial potential for enterprises utilizing edge technologies, if companies are willing and able to enact the considerable organizational changes needed. The edge represents a dramatic overhaul in how companies understand, service, and meet the needs of their customers and employees. It will be a world defined by dynamic, immediate, and personalized services.”

Key Themes and Findings

Commissioned to explore the scale of possibilities presented by edge technologies in the next 3–5 years, the book features insights from 19 leading global CIOs, technology leaders, industry experts and futurists, and a perspectives survey of 200 future thinkers from across the globe. It explores the edge technologies that are driving change, the use cases and businesses opportunities these are creating, and the ways in which organizations can adapt to take advantage. Key trends that emerged include:

  • The edge of the network holds the key to industry transformation: The edge is designed to enable and capitalize on modern digital experiences at the convergence of people, apps, and things – allowing customer and ecosystem partners to take these actionable insights to then create “experiences” for employees and customers. This is making it possible for businesses and organizations in various industries to leverage data and insights from the edge to deliver new and immersive experiences to consumers and end customers. It is driving sectors from education and retail to healthcare and hospitality to rethink how they act today. New types of experiences such as location-aware mobile engagement, digitally assisted patient care, and user-aware meeting rooms can give organizations a competitive advantage.
  • At least one-third of businesses will create edge-enabled mainstream personalization by 2025: The study shows that a clear majority (67%) of respondents believe at least 30% of businesses will be using the edge to create “mainstream personalization” in the next five years. From the classroom to the office, retail stores, and major event venues, edge technologies will enable personalized service delivery that meets growing user expectations of an immediate, customized experience.
  • New benefits from the edge will be realized: Other benefits arising include localized products, services, and pricing (52% of respondents), enhanced real-time market insight (50%), improved customer and user satisfaction (48%), and faster product and service innovation (47%).

Opportunities at the Edge

If we could trap light it could be used as a force field or even a lightsaber in future developments :3.


Quantum computers, which use light particles (photons) instead of electrons to transmit and process data, hold the promise of a new era of research in which the time needed to realize lifesaving drugs and new technologies will be significantly shortened. Photons are promising candidates for quantum computation because they can propagate across long distances without losing information, but when they are stored in matter they become fragile and susceptible to decoherence. Now researchers with the Photonics Initiative at the Advanced Science Research Center (ASRC) at The Graduate Center, CUNY have developed a new protocol for storing and releasing a single photon in an embedded eigenstate—a quantum state that is virtually unaffected by loss and decoherence. The novel protocol, detailed in the current issue of Optica, aims to advance the development of quantum computers.

“The goal is to store and release single photons on demand by simultaneously ensuring the stability of data,” said Andrea Alù, founding director of the ASRC Photonics Initiative and Einstein Professor of Physics at The Graduate Center. “Our work demonstrates that is possible to confine and preserve a single photon in an and have it remain there until it’s prompted by another photon to continue propagating.”

The research team used electrodynamics techniques to develop their theory. They investigate a system composed of an atom and a cavity—the latter of which is partially open and therefore would normally allow light trapped in the system to leak out and be quickly lost. The research team showed, however, that under certain conditions destructive interference phenomena can prevent leakage and allow a single photon to be hosted in the system indefinitely. This embedded eigenstate could be very helpful for storing information without degradation, but the closed nature of this protected state also creates a barrier to exterior stimuli, so that also cannot be injected into the system. The research team was able to overcome this limitation by exciting the system at the same time with two or more photons.