БЛОГ

Archive for the ‘computing’ category: Page 77

May 3, 2024

International team cracks genomic code for earliest forms of terrestrial plant life

Posted by in category: computing

Plant life first emerged on land about 550 million years ago, and an international research team co-led by University of Nebraska–Lincoln computational biologist Yanbin Yin has cracked the genomic code of its humble beginnings, which made possible all other terrestrial life on Earth, including humans.

May 2, 2024

Challenges of Exoplanet Exploration: Defining Biosignatures on Distant Worlds

Posted by in categories: computing, space

Exoplanet, K2-18b, raised several eyebrows with both the scientific community and the public in 2023 when NASA’s James Webb Space Telescope found a molecule called dimethyl sulphide (DMS) in the atmosphere of this Hycean world. However, a recent study published in The Astrophysical Journal Letters consisting of a team of international researchers led by the University of California, Riverside (UC Riverside) use computer models to challenge these recent findings. This study holds the potential to help scientists better understand what data analysis methods are the most efficient in identifying potential biosignatures on exoplanets.

“What was icing on the cake, in terms of the search for life, is that last year these researchers reported a tentative detection of dimethyl sulfide, or DMS, in the atmosphere of that planet, which is produced by ocean phytoplankton on Earth,” said Dr. Shang-Min Tsai, who is a postdoctoral researcher at UC Riverside and lead author of the study.

For the study, the researchers used a variety of 2D and 3D computer models to ascertain the likelihood of detecting DMS within the data. in the end, they found that DMS could not be detected within the data but were quick to note that accumulation of DMS could result in it reaching amounts where it could be detected. To find DMS, JWST would need to use a more powerful instrument than what it used last year to identify DMS, which it hopes to use later this year.

May 2, 2024

Cosmological Alpha, Deep Time, and the Simulation Hypothesis

Posted by in categories: computing, quantum physics

As Digital Physics gains traction, some theorists propose that our universe could fundamentally operate like a quantum computer, where space-time itself is a computational grid.

May 1, 2024

Intel Takes Next Step Toward Building Scalable Silicon-Based Quantum Processors

Posted by in categories: business, computing, quantum physics

Research published in Nature demonstrates high qubit control fidelity and uniformity in single-electron control.

SANTA CLARA, Calif., May 1, 2024 —(BUSINESS WIRE)—Today, Nature published an Intel research paper, “Probing single electrons across 300-mm spin qubit wafers,” demonstrating state-of-the-art uniformity, fidelity and measurement statistics of spin qubits. The industry-leading research opens the door for the mass production and continued scaling of silicon-based quantum processors, all of which are requirements for building a fault-tolerant quantum computer.

Quantum hardware researchers from Intel developed a 300-millimeter cryogenic probing process to collect high-volume data on the performance of spin qubit devices across whole wafers using complementary metal oxide semiconductor (CMOS) manufacturing techniques.

May 1, 2024

Physicists build new device that is foundation for quantum computing

Posted by in categories: computing, quantum physics

Scientists have adapted a device called a microwave circulator for use in quantum computers, allowing them for the first time to precisely tune the exact degree of nonreciprocity between a qubit, the fundamental unit of quantum computing, and a microwave-resonant cavity. The ability to precisely tune the degree of nonreciprocity is an important tool to have in quantum information processing. In doing so, the team derived a general and widely applicable theory that simplifies and expands upon older understandings of nonreciprocity so that future work on similar topics can take advantage of the team’s model, even when using different components and platforms.

May 1, 2024

Generating graph states of atomic ensembles via photon-mediated entanglement

Posted by in categories: computing, quantum physics

Graph states, a class of entangled quantum states that can be represented by graphs, have been the topic of numerous recent physics studies, due to their intriguing properties. These unique properties could make them particularly promising for quantum computing applications, as well as a wider range of quantum technologies.

May 1, 2024

Scientists show that there is indeed an ‘entropy’ of quantum entanglement

Posted by in categories: computing, cosmology, quantum physics

Bartosz Regula from the RIKEN Center for Quantum Computing and Ludovico Lami from the University of Amsterdam have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of “entropy” for the phenomenon of quantum entanglement. This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers. Little is currently understood about the optimal ways to make an effective use of it, despite it being the focus of research in quantum information science for decades.

The second law of thermodynamics, which says that a system can never move to a state with lower “entropy”, or order, is one of the most fundamental laws of nature, and lies at the very heart of physics. It is what creates the “arrow of time,” and tells us the remarkable fact that the dynamics of general physical systems, even extremely complex ones such as gases or black holes, are encapsulated by a single function, its “entropy.”

There is a complication, however. The principle of entropy is known to apply to all classical systems, but today we are increasingly exploring the quantum world. We are now going through a quantum revolution, and it becomes crucially important to understand how we can extract and transform the expensive and fragile quantum resources.

May 1, 2024

Scientists Say New Material Can Suck Carbon Out of Atmosphere Faster Than Trees

Posted by in categories: climatology, computing, sustainability

A team of scientists in the United Kingdom say they’ve discovered a porous material that has the potential to store large quantities of greenhouse gases, making it a possible new tool in the arsenal to fight climate change.

The scientists detailed how they used computational models to develop this material in a newly published paper in the journal Nature Synthesis, arguing that certain features of the structure could make it excellent storage for carbon dioxide and sulphur hexafluoride, another powerful greenhouse gas.

“This is an exciting discovery because we need new porous materials to help solve society’s biggest challenges,” engineering professor Marc Little from Edinburgh’s Heriot-Watt University said in a statement about the research.

May 1, 2024

New class of spongy materials can self-assemble into precisely controllable structures

Posted by in categories: computing, materials

A team of researchers led by the University of Massachusetts Amherst has drawn inspiration from a wide variety of natural geometric motifs—including those of 12-sided dice and potato chips—in order to extend a set of well-known design principles to an entirely new class of spongy materials that can self-assemble into precisely controllable structures.

May 1, 2024

The science of static shock jolted into the 21st century

Posted by in categories: bioengineering, biological, chemistry, computing, mathematics, particle physics, science

Now Princeton researchers have sparked new life into static. Using millions of hours of computational time to run detailed simulations, the researchers found a way to describe static charge atom-by-atom with the mathematics of heat and work. Their paper appeared in Nature Communications on March 23.

The study looked specifically at how charge moves between materials that do not allow the free flow of electrons, called insulating materials, such as vinyl and acrylic. The researchers said there is no established view on what mechanisms drive these jolts, despite the ubiquity of static: the crackle and pop of clothes pulled from a dryer, packing peanuts that cling to a box.

“We know it’s not electrons,” said Mike Webb, assistant professor of chemical and biological engineering, who led the study. “What is it?”

Page 77 of 855First7475767778798081Last