Toggle light / dark theme

Researchers develop novel miniaturized lidar technology based on cross dual-microcomb

Optical frequency combs, as a time and frequency “ruler,” have important applications in precision ranging. Conventional dual-comb ranging schemes utilize the optical Vernier effect to achieve long-distance measurements, and they typically require asynchronously secondary sampling, either after changing the repetition rates or swapping dual-comb roles.

These approaches have a commonly overlooked issue: When considering real-time distance variations induced by target motion or atmospheric turbulence in practical measurement scenarios, the asynchronously secondary sampling will introduce substantial absolute distance measurement error, namely asynchronous measurement error (AME).

In a study published in Science Advances, Prof. Zhang Wenfu’s team from the Xi’an Institute of Optics and Precision Mechanics (XIOPM) of the Chinese Academy of Sciences proposed an on-chip cross dual-microcomb (CDMC) ranging method based on dispersion interferometry. This method resolves the AME issue by eliminating secondary measurements through one-shot spectral sampling of cross dual-microcomb carrying distance information in the frequency domain.

Scientists Discover Revolutionary New Class of Materials: “Intercrystals”

Scientists at Rutgers University-New Brunswick have identified a new type of material known as intercrystals, which display unusual electronic behaviors that may help shape future technologies.

According to the research team, intercrystals demonstrate electronic characteristics not previously observed, opening the door to progress in areas such as advanced electronic devices, quantum computing.

Quantum computers exploit superposition and entanglement to solve complex problems that are intractable for traditional computers.

Changing how we understand, and potentially treat, misophonia

Throughout her career, Laurie Heller has listened closely—not just to words, but to sound itself. In the Auditory Lab at Carnegie Mellon University, the psychology professor explores how the brain interprets everything from environmental clatter to the subtle noises that can spark deep feelings of safety, connection, or in some cases, rage.

So when Yuqi “Monica” Qiu, then an undergraduate in , emailed Heller after seeing a recruitment poster for a study, Heller was ready to listen.

“I have misophonia,” Qiu wrote. “And I want to help.”

Sound Waves Unlock a New Path to Practical Quantum Computing

Caltech scientists have created a hybrid quantum memory that converts electrical information into sound, allowing quantum states to last 30 times longer than in standard superconducting systems.

Their mechanical oscillator, like a microscopic tuning fork, could pave the way for scalable and reliable quantum storage.

Quantum Bits vs. Classical Bits.

Unique fingerprints in 3D printing may foil adversaries

3D printing is a simple way to create custom tools, replacement pieces and other helpful objects, but it is also being used to create untraceable firearms, such as ghost guns, like the one implicated in the late 2024 killing of UnitedHealthcare CEO Brian Thompson.

Netanel Raviv, assistant professor of computer science & engineering in the McKelvey School of Engineering at Washington University in St. Louis, led a team from the departments of Computer Science & Engineering and Biomedical Engineering that has developed a way to create an embedded fingerprint in 3D-printed parts that would withstand the item being broken, allowing authorities to gain information for forensic investigation, such as the identity of the printer or the person who owns it and the time and place of printing.

The research will be presented at the USENIX Security Symposium Aug. 13–15, 2025, in Seattle. The first authors of the paper are Canran Wang and Jinweng Wang, who earned doctorates in computer science in 2024 and 2025, respectively. The research is published on the arXiv preprint server.

/* */