БЛОГ

Archive for the ‘computing’ category: Page 819

Jan 12, 2016

Why evolution may be intelligent, based on deep learning

Posted by in categories: biological, computing, robotics/AI

Makes sense.


Moth Orchid flower (credit: Imgur.com)

A computer scientist and biologist propose to unify the theory of evolution with learning theories to explain the “amazing, apparently intelligent designs that evolution produces.”

Continue reading “Why evolution may be intelligent, based on deep learning” »

Jan 12, 2016

Marc Andreessen: ‘In 20 years, every physical item will have a chip implanted in it’

Posted by in categories: computing, internet

Star venture capitalist Andreessen’s new $25m bet heralds the dawn of Internet.
of Things 2.0

Read more

Jan 11, 2016

DARPA Advance Breaks New Ground for Operating In Congested Electromagnetic Spectrum

Posted by in categories: computing, military

Competition for scarce electromagnetic (EM) spectrum is increasing, driven by a growing military and civilian demand for connected devices. As the spectrum becomes more congested, the Department of Defense (DoD) will need better tools for managing the EM environment and for avoiding interference from competing signals. One recent DARPA-funded advance, an exceptionally high-speed analog-to-digital converter (ADC), represents a major step forward. The ADC could help ensure the uninterrupted operation of spectrum-dependent military capabilities, including communications and radar, in contested EM environments. The advance was enabled by 32 nm silicon-on-insulator (SOI) semiconductor technologies available through DARPA’s ongoing partnership with GlobalFoundries, a manufacturer of highly-advanced semiconductor chips.

The EM spectrum, whose component energy waves include trillionth-of-a-meter-wavelength gamma rays to multi-kilometer-wavelength radio waves, is an inherently physical phenomenon. ADCs convert physical data—that is, analog data—on the spectrum into numbers that a digital computer can analyze and manipulate, an important capability for understanding and adapting to dynamic EM environments.

Today’s ADCs, however, only process data within a limited portion of the spectrum at a given time. As a result, they can temporarily overlook critical information about radar, jamming, communications, and other potentially problematic EM signals. DARPA’s Arrays at Commercial Timescales (ACT) program addressed this challenge by supporting the development of an ADC with a processing speed nearly ten times that of commercially available, state-of-the-art alternatives. By leveraging this increased speed, the resulting ADC can analyze data from across a much wider spectrum range, allowing DoD systems to better operate in congested spectrum bands and to more rapidly react to spectrum-based threats.

Read more

Jan 11, 2016

How to Teleport Info Out of a Black Hole

Posted by in categories: computing, cosmology, quantum physics

Many folks often ask “What’s next for technology after Quantum?” Many suggests space, some folks suggest some sort of vNext technology or science that hasn’t been identified or fully discovered, etc. It truly is something that many of us have been asking ourselves for the past few years. However, there is still so much that still needs to be experimented with in ragards to Quantum; including teleporting information via Quantum from a black hole. And, what and how will this type of experiment improve our own usage of Quantum in the future.


The information that can be extracted from this hypothetical black hole is quantum information, meaning that instead of existing in either a 0 or 1 state, like a classical bit, the data collected would exist as a superposition of all potential states.

“We’ve demonstrated concretely that it is possible, in principle, to retrieve some quantum information from a black hole,” said study co-author Adam Jermyn, a doctoral candidate at the University of Cambridge in England. [The 9 Biggest Unsolved Mysteries in Physics]

Continue reading “How to Teleport Info Out of a Black Hole” »

Jan 10, 2016

Human v2.0

Posted by in categories: computing, neuroscience

https://www.youtube.com/watch?v=UApWUAIyOjM

Visit: http://www.spaceandintelligence.com
https://www.facebook.com/SpaceAndIntelligence

Meet the scientific prophets who claim we are on the verge of creating a new type of human — a human v2.0. At a certain moment in the future computer intelligence will equal the power of the human brain. Some believe this will revolutionise humanity — we would be able to download our minds to computers extending our lives indefinitely. Others fear this will lead to oblivion by giving rise to destructive ultra intelligent machines. One thing they all agree on is that the coming of this moment — and whatever it brings — is inevitable.

Originally published in 2006 by BBC Horizon.

Read more

Jan 10, 2016

Quantum Computing – things that need to be considered for our future Quantum Computing World

Posted by in categories: computing, finance, internet, mobile phones, quantum physics, robotics/AI, space, virtual reality, wearables

Sharing my recent posting that I did on Linkedin Pulse. I will admit that I purposely delayed this article in concerns of creating a panic; however, with the progress that has been occuring across the globe and in some cases accelerated the maturity of this technology; I believe it is time for governments, industries, etc. to start thinking about their own broader strategic plans around Quantum as well as how they will address any impacts.


Quantum Computing is making great progress in so many areas such as chips, network/ Internet, etc. each month. And, many industries such as financials, telecom, tech, and public sector namely defense and space, etc. have made big investments in this technology as well as have developed some interesting partnerships such as Wall Street. Everything looks so promising and exciting for our future when we look at the various ways how Quantum Computing can change our lives around AI, improving the medical technologies, how we interact with devices (wearables, VR, etc.), and even how we travel will advance through this technology. The future looks extremely rosy and bright; right?.

I believe it can be with Quantum; however, in every major shift/ disruption in technology, there is always a transformation progression that has to naturally occur thru stages. And, Quantum is no different; however, the disruption that Quantum will bring is going to be on a much more massive scale than what we have seen in the past. The reason why is Quantum is truly going to impact and improve every area of technology not just in devices, or a platform, AI, VR, etc.; I mean everything in technology will be changed and improved by Quantum over time.

Continue reading “Quantum Computing – things that need to be considered for our future Quantum Computing World” »

Jan 9, 2016

Researchers gauge quantum properties of nanotubes, essential for next-gen electronics

Posted by in categories: computing, electronics, materials, nanotechnology, quantum physics

Loving the progress around Quantum.


Today, a group of scientists — John A. Rogers, Eric Seabron, Scott MacLaren and Xu Xie from the University of Illinois at Urbana-Champaign; Slava V. Rotkin from Lehigh University; and, William L. Wilson from Harvard University — are reporting on the discovery of an important method for measuring the properties of nanotube materials using a microwave probe. Their findings have been published in ACS Nano in an article called: “Scanning Probe Microwave Reflectivity of Aligned Single-Walled Carbon Nanotubes: Imaging of Electronic Structure and Quantum Behavior at the Nanoscale.”

The researchers studied single-walled carbon nanotubes. These are 1-dimensional, wire-like nanomaterials that have electronic properties that make them excellent candidates for next generation electronics technologies. In fact, the first prototype of a nanotube computer has already been built by researchers at Stanford University. The IBM T.J. Watson Research Center is currently developing nanotube transistors for commercial use.

Continue reading “Researchers gauge quantum properties of nanotubes, essential for next-gen electronics” »

Jan 9, 2016

Researchers discover new fundamental quantum mechanical property

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Too cool.


Nanotechnologists at the University of Twente research institute MESA+ have discovered a new fundamental property of electrical currents in very small metal circuits. They show how electrons can spread out over the circuit like waves and cause interference effects at places where no electrical current is driven. The geometry of the circuit plays a key role in this so called nonlocal effect. The interference is a direct consequence of the quantum mechanical wave character of electrons and the specific geometry of the circuit. For designers of quantum computers, it is an effect to take account of. The results are published in the British journal Scientific Reports.

Interference is a common phenomenon in nature and occurs when one or more propagating waves interact coherently. Interference of sound, light or water waves is well known, but also the carriers of electrical current — electrons — can interfere. It shows that electrons need to be considered as waves as well, at least in nanoscale circuits at extremely low temperatures: a canonical example of the quantum mechanical wave-particle duality.

Continue reading “Researchers discover new fundamental quantum mechanical property” »

Jan 9, 2016

Science Documentary: DNA Hard Drives, Quantum Computing, Moore’s Law

Posted by in categories: computing, education, materials, nanotechnology, particle physics, quantum physics, science, security

DNA is similar to a hard drive or storage device, in that contains the memory of each cell of every living, and has the instructions on how to make that cell. DNA is four molecules combined in any order to make a chain of one larger molecule. And if you can read that chain of four molecules, then you have a sequence of characters, like a digital code. Over the years the price of sequencing a human genome has dropped significantly, much to the delight of scientists. And since DNA is a sequence of four letters, and if we can manipulate DNA, we could insert a message and use DNA as the storage device.

At this point in time, we are at the height of the information age. And computers have had an enormous impact on all of our lives. Any information is able to be represented as a collection of bits. And with Moore’s law, which states that computing power doubles every 18 months, our ability to manipulate and store these bits has continued to grow and grow. Moore’s law has been driven by scientists being able to make transistors and integrated circuits continuously smaller and smaller, but there eventually comes a point we reach in which these transistors and integrated circuits cannot be made any smaller than they already are, since some are already at the size of a single atom. This inevitably leads us into the quantum world. Quantum mechanics has rules which are, in many ways, hard for us to truly comprehend, yet are nevertheless tested. Quantum computing looks to make use of these strange rules of quantum physics, and process information in a totally different way. Quantum computing looks to replace the classical bits which are either a 0 or a 1, with quantum bits, or qubits, which can be both a 0 and a 1 at the same time. This ability to be two different things at the same time is referred to as a superposition. 200 qubits hold more bits of information than there are particles in the universe. A useful quantum computer will require thousands or even millions of physical qubits. Anything such as an atom can serve as a quantum bit for making a quantum computer, then you can use a superconducting circuit to build two artificial atoms. So at this point in time we have a few working quantum transistors, but scientists are working on developing the quantum integrated circuit. Quantum error correction is the biggest problem encountered in development of the quantum computer. Quantum computer science is a field that right now is in its very early stages, since scientists have yet been able to develop any quantum hardware.

Continue reading “Science Documentary: DNA Hard Drives, Quantum Computing, Moore’s Law” »

Jan 9, 2016

Processors That Work Like Brains Will Accelerate Artificial Intelligence

Posted by in categories: computing, robotics/AI

Weekend Reads: Even tiny fly brains can do many things computers can’t. This 2014 feature showed why making machines much smarter might require processors that more closely mimic brains.

____________________________________________

This weekend we revisit stories from MIT Technology Review’s archives that weigh the question of how far AI can go—and when.

Read more