Toggle light / dark theme

It’s clearly some kind of jewelry or small weapon case, not a freaking laptop.
But just for arguments sake, why would advanced time travelers be using laptops at all? Why not a tablet? Oh god, now they’re going to go over every single ancient depiction of a person looking at a tablet and say it’s from the future. That would have made the library at Alexandria the ancient equivalent to a Best Buy big box store in our time…

Oh god, what have I done?
Too bad I can’t go back in time and…errr.
wink


A statue showing a young girl holding up what appears to be a laptop — complete with USB ports — has sparked a frenzy among conspiracy theorists.

The statue, ‘Grave Naiskos of an Enthroned Woman with an Attendant’ is in The J. Paul Getty Museum in Malibu, California.

‘I am not saying that this is depicting an ancient laptop computer,’ said YouTuber StillSpeakingOut.

Read more

Very interesting discovery about how our brain thinks; our brain isn’t always 100% error proof according to this report from Carnegie Mellon University. Therefore, when researchers are mapping the brain plus mimicking human brain functions; what is the tolerance level for error allowed then?


(Source: Carnegie Mellon University)A study conducted at Carnegie Mellon University investigated the brain’s neural activity during learned behavior and found that the brain makes mistakes because it applies incorrect inner beliefs, or internal models, about how the world works. The research suggests that when the brain makes a mistake, it actually thinks that it is making the correct decision—its neural signals are consistent with its inner beliefs, but not with what is happening in the real world.

“Our brains are constantly trying to predict how the world works. We do this by building internal models through experience and learning when we interact with the world,” said Steven Chase, an assistant professor in the Department of Biomedical Engineering and the Center for the Neural Basis of Cognition. “However, it has not yet been possible to track how these internal models affect instant-by-instant behavioral decisions.”

The researchers conducted an experiment using a brain-machine interface, a device that allows the brain to control a computer cursor using thought alone. By studying the brain’s activity, the researchers could see how the brain thinks an action should be performed. The researchers report that the majority of errors made were caused by a mismatch between the subjects’ internal models and reality. In addition, they found that internal models realigned to better match reality during the course of learning. “To our knowledge, this is the most detailed representation of a brain’s inner beliefs that has been identified to date,” said Byron Yu, an associate professor in the Department of Electrical and Computer Engineering and the Department of Biomedical Engineering.

Building building diamond lattices through DNA.


Using bundled strands of DNA to build Tinkertoy-like tetrahedral cages, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have devised a way to trap and arrange nanoparticles in a way that mimics the crystalline structure of diamond. The achievement of this complex yet elegant arrangement, as described in a paper published February 5, 2016, in Science, may open a path to new materials that take advantage of the optical and mechanical properties of this crystalline structure for applications such as optical transistors, color-changing materials, and lightweight yet tough materials.

“We solved a 25-year challenge in building diamond lattices in a rational way via self-assembly,” said Oleg Gang, a physicist who led this research at the Center for Functional Nanomaterials (CFN) at Brookhaven Lab in collaboration with scientists from Stony Brook University, Wesleyan University, and Nagoya University in Japan.

The scientists employed a technique developed by Gang that uses fabricated DNA as a building material to organize nanoparticles into 3D spatial arrangements. They used ropelike bundles of double-helix DNA to create rigid, three-dimensional frames, and added dangling bits of single-stranded DNA to bind particles coated with complementary DNA strands.

AR Contacts — Google and Huawei are both doing some really interesting things in this space; and I cannot wait until I get my hands on this technology.


Research looking into polymer technology points us in a direction several steps beyond the doomed Google Glass experiment | contact lens.

Read more

Graphene; the material for brain chip implants; however, Q-Dots ferrofluid is where it will make us totally rethink brain implants in the future.


A new technology developed by researchers in Italy and the United Kingdom allows for the creation of graphene-based materials that can be interfaced with neurons without losing its electrical conductivity. This can lead to the creation of neural electrodes that are not only biocompatible, but stable within the body as well. (Photo : University of Cambridge)

Scientists from the United Kingdom and Italy have developed a new process in which a carbon form known as graphene is combined with neurons without sacrificing the integrity of these cells.

This revolutionary technology is believed to be a stepping stone for the creation of graphene-based electrodes, which can be implanted in the brain of people with motor disorders, such as Parkinson’s disease, in order to regain control of their damaged limbs.

These types of movies always come out when society is about to make a huge change in it’s technology that will reshape everything. In the 1950’s we saw movies about alien invasions and run away computers. 60’s & 70’s it was the robots taking over or Dystopia such as West World, Omega Man, Clockwork Orange, then 80’s MadMax and so on. Here we are again with more end of human existance movies because of AI and Quantum. Here is the latest dystopian movie.


This is “The Last Generation to Die — Trailer” by timmaupin on Vimeo, the home for high quality videos and the people who love them.

Read more