Toggle light / dark theme

Addressing Naturalistic Objections to Extending Healthy Human Life Spans

Playing God is a common objection to developing technologies to increase human lifespan and yet it is never used in relation to current therapies already available.


Here I’ll point out another of the articles going up at the Life Extension Advocacy Foundation, this time on the topic of the naturalistic fallacy where it occurs in opposition to healthy life extension. Our community would like to build medical therapies that address the causes of aging, thereby ending age-related disease and greatly extending healthy human life spans. It has always surprised me to find that most people, at least initially, object to this goal. It seems perfectly and straightforwardly obvious to me that aging to death, suffering considerably along the way, is just as much a problem to be overcome as any other medical condition that causes pain and mortality. Yet opposition exists, and that opposition is one of the greatest challenges faced when raising funding and pushing forward with research and development of rejuvenation therapies.

When it comes to treating aging as a medical condition the naturalistic fallacy is voiced in this way: aging is natural, what is natural is good, and therefore we shouldn’t tamper with aging. If you look around at your houses, your computers, your modern medicine, and consider that such an objection is perhaps just a little late to the game, and hard to hold in a self-consistent manner, then you’re probably not alone. Notably, the same objection is rarely brought up when it comes to treating specific age-related diseases, or in the matter of therapies that already exist. People who are uncomfortable about radical changes to the course of aging and who speak out against the extension of human life are nonetheless almost all in favor of cancer research, treatments for heart disease, and an end to Alzheimer’s disease. Yet age-related diseases and aging are the same thing, the same forms of damage and dysfunction, only differing by degree and by the names they are given.

A World-Renowned Futurist Reveals The Hotel Of The Future

His vision is definitely achievable.


The future of airport transfer—in a pod.

World-renowned global futurist Dr. James Canton envisions hotel experiences that include supersonic travel and DNA-driven spa treatments, so what can we expect in the next decade? Canton, a former Apple Computer executive, author and social scientist, worked in conjunction with Hotels.com, to present the Hotels of the Future Study at a recent conference in San Francisco. In the study he describes hotels with everything from RoboButlers and virtual reality entertainment to hotel restaurants based on gourmet genomics and the emergence of neurotechnology to make sleep more refreshing. Canton, who has advised three White House Administrations and over 100 companies, believes these megatrends will shape the future of the hotel experience and that the RoboButler is the change we will most likely see first. Although, he also notes that plans are already underway for a supersonic hyperloop route from Los Angeles to New York City.

Microsoft looks to tap quasiparticles to bring about a scalable quantum computer

Microsoft has been on a quest to build the holy grail of computers for over a decade, dumping tons of money into researching quantum computing and the company says they are ready to transition over to the engineering phase of their endeavor. At least that’s what MS executive Todd Holmdahl aims to accomplish by developing the hardware and software to do so.

Researchers Develop New Porous Graphene Material

Stronger Graphene; can you imagine have a car or SUV that is solid like a Sherman Tank and weighs the same or less than your car or SUV does today; or a commercial jet that it’s fuselage remains intact when it crashes while protecting others inside; or a building that does not get ripped apart in a tornado? With this form of graphene it may be possible.


Now a team of researchers at MIT have developed a computer model that simulates fusing flakes of graphene into three-dimensional configurations.

According to the researchers, Graphene is a strong material. As such, the porous graphene material can be used in the construction industry by creating strong and light materials.

This also suggests that other strong and lightweight materials can be made stronger as well by taking on similar geometric features. They were mechanically tested for their tensile and compressive properties, and their mechanical response under loading was simulated using the team’s theoretical models.

Running an experiment in the IBM Quantum Experience

IBM Research is making quantum computing available to the public for the first time, providing access to a quantum computing platform from any desktop or mobile device via the cloud. Users of the platform called the IBM Quantum Experience can create algorithms and run experiments on an IBM quantum processor, learn about quantum computing through tutorials and simulations, and get inspired by the possibilities of a quantum computer.

To learn more about IBM’s quantum computing research and get access to the IBM Quantum Experience please visit: http://ibm.com/quantumcomputing

Researchers Build FIRST Reprogrammable Quantum Computer!

Nice advancement this week in QC.


Researchers may have finally created the first fully reprogrammable quantum computer in the world. This changes the entire spectrum of the technology, as quantum computers so far could only run one type of equation.

This marks the beginning of reprogrammable quantum computers. Several teams and companies like IBM are still in the race towards quantum computing, which so far can only run one type of equation. This seems ironic as they can theoretically run more operations than there are atoms in the universe. But this stops now.

According to Futurism, a team from the University of Maryland may have developed the first fully programmable quantum computer.

/* */