We may already have had our first-ever encounter with dark matter, according to researchers who say a mysteriously high-energy particle detected in 2023 is not a neutrino after all, but something far stranger

An international team of astronomers has employed various satellites and ground-based telescopes to perform multiwavelength observations of a supernova remnant known as SNR J0450.4−7050. Results of the observational campaign, published June 18 on the pre-print server arXiv, yield new insights into the properties of this remnant, finding that it is much larger than previously thought.
Supernova remnants (SNRs) are diffuse, expanding structures resulting from a supernova explosion, which usually last several hundred thousand years before dispersing into the interstellar medium (ISM). Observations show that SNRs contain ejected material expanding from the explosion and other interstellar material that has been swept up by the passage of the shockwave from the exploded star.
Studies of SNRs beyond the Milky Way are crucial for understanding their feedback in different evolutionary phases and gaining insights into their local ISM. The Large Magellanic Cloud (LMC) is one of the galaxies that has its SNR population explored in detail.
Dark matter, although not visible, is believed to make up most of the total mass of the universe. One theory suggests that ultralight dark matter behaves like a continuous wave, which could exert rhythmic forces that are detectable only with ultra-sensitive quantum instrumentation.
New research published in Physical Review Letters and led by Rice University physicist Christopher Tunnell and postdoctoral researcher Dorian Amaral, the study’s first author and lead analyst, sees the first direct search for ultralight dark matter using a magnetically levitated particle.
In collaboration with physicists from Leiden University, the team suspended a microscopic neodymium magnet inside a superconducting enclosure cooled to near absolute zero. The setup was designed to detect subtle oscillations believed to be caused by dark matter waves moving through Earth.
In a recently published paper in Physical Review Letters, scientists propose a comprehensive theoretical framework indicating that gravitational wave signals from black hole mergers are more complex than earlier anticipated.
When two black holes merge in the cosmos, the cataclysmic event doesn’t end with a simple collision. The newly formed black hole continues to vibrate like a struck bell, producing gravitational waves in what scientists call the “ringdown” phase.
Researchers found that the cosmic reverberations involve sophisticated quadratic mode couplings—secondary oscillations that develop when primary modes interact with each other. This nonlinear behavior had been predicted in Einstein’s theory of general relativity, but has never been fully characterized until now.
IN A NUTSHELL 🔬 MIT researchers have developed a superconducting diode-based rectifier that converts AC to DC on a single chip. 💡 This innovation could streamline power delivery in ultra-cold quantum systems, reducing electromagnetic noise and interference. 🔍 The technology is crucial for enhancing qubit stability and could significantly impact dark matter detection circuits at
Caltech simulations reveal what happens when black holes collide with neutron stars—violent cracking, intense shock waves, and short-lived black hole pulsars.
Small telescopes in Chile are first on Earth to cut through the cosmic noise. For the first time, scientists have used Earth-based telescopes to look back over 13 billion years to see how the first stars in the universe affect light emitted from the Big Bang.
Using telescopes high in the Andes mountains of northern Chile, astrophysicists have measured this polarized microwave light to create a clearer picture of one of the least understood epochs in the history of the universe, the Cosmic Dawn.
“People thought this couldn’t be done from the ground. Astronomy is a technology-limited field, and microwave signals from the Cosmic Dawn are famously difficult to measure,” said Tobias Marriage, project leader and a Johns Hopkins professor of physics and astronomy. “Ground-based observations face additional challenges compared to space. Overcoming those obstacles makes this measurement a significant achievement.”