Toggle light / dark theme

I think Stephen hawking was right about the Einstein physics of our universe but at the quantum mechanical realm it breaks all the rules with infinite energy.


The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

The hunt for dark matter has long been one of the most compelling challenges in physics, with new candidates emerging from cutting-edge research in cosmic-ray propagation and particle detection.


Two new studies highlight the enigmatic nature of antimatter, revealing its potential role in both understanding the universe’s origins and unlocking the secrets of particle physics.

Scientists are using advanced simulations to explore the aftermath of neutron star collisions, where remnants might form and avoid collapsing into black holes.

This research not only sheds light on the dynamics and cooling of these remnants through neutrino emissions but also provides crucial insights into the behavior of nuclear matter under extreme conditions. The findings contribute to our understanding of astronomical events and the conditions that may or may not lead to black hole formation.

Mysterious aftermath of neutron star collisions.

The James Webb Space Telescope (JWST) is the largest and most powerful space telescope built to date. Since it was launched in December 2021 it has provided groundbreaking insights. These include discovering the earliest and most distant known galaxies, which existed just 300 million years after the Big Bang.

Utilizing the James Webb Space Telescope, astronomers have refined the measurement of the Hubble constant by studying SN H0pe, a gravitationally lensed Type Ia supernova.

This approach, integrating gravitational lensing and time-delay observations, offers a more precise determination of the universe’s expansion rate, helping reconcile some differences between past measurements.

Measuring the Hubble constant, which defines the rate at which the universe is expanding, is a dynamic field of study for astronomers globally. These researchers analyze data from both terrestrial and orbital observatories. NASAs James Webb Space Telescope has already made significant contributions to this discussion. Earlier this year, astronomers employed Webb data that included Cepheid variables and Type Ia supernovae—both reliable cosmic distance markers—to validate previous measurements of the universe’s expansion rate made by NASA’s Hubble Space Telescope.

Watching for changes in the Mars ’ orbit over time could be a new way to detect passing dark matter.

Dark matter, potentially in the form of primordial black holes, could be revealing its presence through subtle influences on Mars’ orbit. These black holes, theorized remnants from the early universe, might be detectable every decade as they pass through the solar system, offering a new way to study the elusive dark matter.

Understanding dark matter: theories and experiments.

I have my own introduction quantum mechanics course that you can check out on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Physicists are obsessed with black holes, but we still don’t know what’s going on inside of them. One idea is that black holes do not truly exist, but instead they are big quantum objects that have been called fuzzballs or frozen stars. This idea has a big problem. Let’s take a look.

This video comes with a quiz which you can take here: https://quizwithit.com/start_thequiz/.

Paper: https://journals.aps.org/prd/abstract

One of the great challenges of modern cosmology is to reveal the nature of dark matter. We know it exists (it constitutes more than 85% of the matter in the universe), but we have never seen it directly and still do not know what it is.

Following the accelerated expansion discovery of the Universe, scientists introduced dark energy concepts, which faced issues like the cosmological constant problem.

Researchers at IKBFU developed a holographic dark energy model based on quantum gravity, which views the Universe as a hologram. This model, initially unstable, was refined to treat dark energy as perturbations, stabilizing it. It is now being tested against observational data for accuracy.

Discovery of Accelerated Universe Expansion.