Toggle light / dark theme

A new study submitted to the Astrophysical Journal has claimed to have found evidence of interactions between our universe and other universes by looking at the cosmic microwave background (CMB). The scientist discovered an anomaly associated with some regions of the CMB, and he believes it is evidence for alternate universes.

Dr Ranga Chary, the author of the study, wrote that his observations could “possibly be due to the collision of our universe with an alternate universe whose baryon to photon ratio is a factor of about 65 larger than ours.” A pre-print of the study, which is yet to be peer reviewed, is available on ArXiv.

The CMB is the first light that shone in the universe. It was emitted 370,000 years after the Big Bang when the universe was cool enough for hydrogen to form and the original photons were free to move without getting absorbed by the primordial matter.

Read more

The novel its a bit older, but it‘s an incredible vision!


When Star Trek’s Scotty warns the Captain that the engines can’t “take it”, he might just be best off switching fuel — a new book claims that humanity could reach the stars using vast spacecraft harnessing the energy of black holes with the power to “eat planets”.

Inside would be an artificial black hole — created by spheres of generators firing “gravitons”- and, claims author Dr Roger Hoskins, Fellow of the Royal Astronomical Society, would curve space-time — and would be “faster than anti matter drives.”

Captain Kirk would be jealous of the speeds offered by a black hole powered craft — which displaces or curves space time, like a warp drive, thus appearing to go faster than light.

Read more

Excerpt from This Book Is From the Future: A Journey Through Portals, Relativity, Wormholes and Other Adventures in Time Travel by Marie D. Jones & Larry Flaxman.

Time travel has enchanted and intrigued us since the earliest days of fiction, when authors such as H.G. Wells, Samuel Madden, Charles Dickens and Enrique Gaspar y Rimbau stretched and challenged our imaginations with images and tales of men and women who invented amazing machines and devices that could take them back in time, or forward into the future.

Because of the restrictions of light speed, and the paradoxes of going back to the past without damaging the future timeline, and a host of other obstacles and challenges, we, in fact, have remained stuck in the present.

Read more

When a star wanders too close to a black hole, immense gravitational forces begin to rip it apart in an epic cosmic slaying called a “tidal disruption event.” Some of the star’s mass is flung outward into space, while the rest is drawn in, triggering a powerful flare that showers the sky with x-rays.

Using NASA’s Chandra X-ray Observatory and other telescopes, a team of astronomers has now pieced together one such astronomical feasting frenzy. The event in question, appropriately named “ASASSN-14li,” was spotted near the center of PGC 043234, a galaxy that lies 290 million light years from Earth.

It’s the closest tidal disruption event we’ve discovered in a decade, and astronomers are hopeful that it’ll help us develop theories on the structure and evolution of such cosmic happenings. Findings to date, including hints of wind attempting to flee the black hole’s gravity, are detailed today in the journal Nature.

Read more

According to Albert Einstein, the speed of light is an absolute constant beyond which nothing can move faster. So, how can galaxies be traveling faster than the speed of light if nothing is supposed to be able to break this cosmic speed limit?

I’m a little world of contradictions. “Not even light itself can escape a black hole,” and then, “black holes are the brightest objects in the Universe.” I’ve also said “nothing can travel faster than the speed of light”. And then I’ll say something like, “galaxies are moving away from us faster than the speed of light.” There’s more than a few items on this list, and it’s confusing at best. Thanks Universe!

So, how can galaxies be traveling faster than the speed of light when nothing can travel faster than light? Warp speed galaxies come up when I talk about the expansion of the Universe. Perhaps it’s dark energy acceleration, or the earliest inflationary period of the Universe when EVERYTHING expanded faster than the speed of light.

Read more

https://vimeo.com/126833477

Are we living in a virtual reality? Is the universe emerging from an information processing system? And if so, could we ever tell? Is it possible to ‘hack’ the system and change reality? Take a look at the evidence and decide for yourself! Contributions to THE SIMULATION HYPOTHESIS are made by leading researchers from physics, cosmology, mathematics and information sciences. Appearances by MaxTegmark, Neil degrasse Tyson, Paul Davies, James Gates and many more. Science has never been so much fun!

“What an incredible film! Fascinating, mind-bending stuff.” — Timothy Rhys, Publisher: MovieMaker Magazine.

“Supremely interesting, compelling, fantastic!” — David Hoffman, Producer: Cannes Film Festival Critics Prize Winner.

Read more

A team of physicists has proposed a way of teleporting energy over long distances. The technique, which is purely theoretical at this point, takes advantage of the strange quantum phenomenon of entanglement where two particles share the same existence.

The researchers, who work out of Tohoku University in Japan, and led by Masahiro Hotta,describe their proposal in the latest edition of Physical Review A. Their system exploits properties of squeezed light or vacuum states that should allow for the teleportation of information about an energy state. In turn, this teleported quantum energy could be made useable.

Unlike teleportation schemes as portrayed in Star Trek or The Fly, this type of teleportation describes entanglement experiments in which two entangled particles are joined despite no apparent connection between them. When a change happens to one particle, the same change happens to the other. Hence, the impression of teleportation. Physicists have conducted experiments using light, matter, and now, energy.

According to Hotta, a measurement on the first particle injects quantum energy into the system. Then, by carefully choosing the measurement to do on the second particle, it is possible to extract the original energy.

Read more

Many researchers find these ideas irresistible. Within the last few years, physicists in seemingly unrelated specialties have converged on this confluence of entanglement, space and wormholes. Scientists who once focused on building error-resistant quantum computers are now pondering whether the universe itself is a vast quantum computer that safely encodes spacetime in an elaborate web of entanglement. “It’s amazing how things have been progressing,” says Van Raamsdonk, of the University of British Columbia in Vancouver.

Physicists have high hopes for where this entanglement-spacetime connection will lead them. General relativity brilliantly describes how spacetime works; this new research may reveal where spacetime comes from and what it looks like at the small scales governed by quantum mechanics. Entanglement could be the secret ingredient that unifies these supposedly incompatible views into a theory of quantum gravity, enabling physicists to understand conditions inside black holes and in the very first moments after the Big Bang.

Read more

Catalyst: Virtual Universe — The Illustris supercomputer has modelled vast swathes of the universe, allowing us to visualise incredible scenarios in outer space.

Go to the Journeyman Science playlist: https://www.youtube.com/playlist?list=PLlGSlkijht5iXbPX7d_oTP47c9C3kArQ0

Part of what makes astronomy so difficult is the inconceivability of space and its mind-boggling vastness. But an extraordinary new supercomputer called the Illustris has modelled a huge chunk of the universe: a cube 350 million light years across, an area the home to tens of thousands of galaxies. Illustris reveals how galaxies form and collide, shows what happens when unsuspecting matter falls into black holes, and lifts the lid on a host of other dramatic events that have unfolded since the Big Bang. Dr Graham Phillips takes us on a virtual tour of our wondrous universe.

ABC Australia — Ref 6510.