Toggle light / dark theme

We Could Be Just 10 Seconds Away From Discovering Dark Matter

The mystery of dark matter could be solved in as little as 10 seconds.

When the next nearby supernova goes off, any gamma-ray telescope pointing in the right direction might be treated to more than a light show – it could quickly confirm the existence of one of the most promising dark matter candidates.

Astrophysicists at the University of California, Berkeley predict that within the first 10 seconds of a supernova, enough hypothetical particles called axions could be emitted to prove they exist in a relative blink.

The universe’s evolution seems to be slowing and we don’t know why

As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.

But University of Michigan researchers have discovered that the rate at which these large structures grow is slower than predicted by Einstein’s Theory of General Relativity.

They also showed that as dark energy accelerates the universe’s global expansion, the suppression of the cosmic structure growth that the researchers see in their data is even more prominent than what the theory predicts. Their results are published in Physical Review Letters.

Was our universe generated inside the quantum chaos of a black hole in another universe?

Could Our Universe Have Been Born from a Black Hole?

Black holes are among the most mysterious and fascinating objects in the universe, known for their powerful gravitational pull that nothing can escape. Interestingly, if you were to compress all the matter in the universe into a single point, you would create a black hole roughly the size of the universe itself. While we do not live inside a black hole, the similarities between black holes and our universe raise intriguing questions about their connection.

Event horizons: no escape in both cases.

Observations detect young and energetic pulsar in a supernova remnant

An international team of astronomers has reported the discovery of a new pulsar, which received the designation PSR J1631–4722. The newfound pulsar, which is young and energetic, turns out to be associated with a supernova remnant known as SNR G336.7+0.5. The finding was detailed in a research paper published Dec. 16 on the arXiv pre-print server.

Pulsars are highly magnetized, rotating emitting a beam of electromagnetic radiation. They are usually detected in the form of short bursts of radio emission; however, some of them are also observed via optical, X-ray and gamma-ray telescopes.

Pulsars directly associated with known remnants (SNRs) are generally rare as only dozens of such objects have been discovered to date. Finding these associations is crucial for astronomers as they could shed more light on pulsar formation history and supernova explosion mechanisms.

Supermassive Black Hole Found Tipped Onto Its Side by Mystery Event

A glowing galaxy not far from the Milky Way has been harboring a strange, puzzling secret at its core.

In the center of NGC 5,084, some 80 million light-years away, the supermassive black hole around which the whole galaxy revolves has been discovered tipped over on its side, with its rotational axis parallel to the galactic plane.

It’s a bit like the Uranus of black holes, and astronomers are uncertain how it could have gotten that way – especially since the evidence suggests that it wasn’t always oriented as it is in our current observations.

Quantum correlations could solve the black hole information paradox

The black hole information paradox has puzzled physicists for decades. New research shows how quantum connections in spacetime itself may resolve the paradox, and in the process leave behind a subtle signature in gravitational waves.

For a long time we thought black holes, as mysterious as they were, didn’t cause any trouble. Information can’t be created or destroyed, but when objects fall below the event horizons, the information they carry with them is forever locked from view. Crucially, it’s not destroyed, just hidden.

But then Stephen Hawking discovered that black holes aren’t entirely black. They emit a small amount of radiation and eventually evaporate, disappearing from the cosmic scene entirely. But that radiation doesn’t carry any information with it, which created the famous paradox: When the black hole dies, where does all its information go?

/* */