БЛОГ

Archive for the ‘cosmology’ category: Page 90

Nov 9, 2022

Theorists React to Potential Signal in Dark Matter Detector

Posted by in categories: cosmology, particle physics

A tantalizing signal reported by the XENON1T dark matter experiment has sparked theorists to investigate explanations involving new physics.

On June 16, 2020, the collaboration running XENON1T—one of the world’s most sensitive dark matter detectors—reported a signal it couldn’t explain (see today’s accompanying article, Viewpoint: Dark Matter Detector Delivers Enigmatic Signal). The signal has yet to reach the “5-sigma” bar for discovery, and a mundane explanation could still be the culprit. But theorists have been quick to explore whether exotic particles or interactions might be involved. Physical Review Letters followed a special procedure to get a coherent expert review of the proposals it received. Now, the journal is publishing five papers that represent the breadth of theories being pursued.

All of the reported scenarios explain two aspects of the signal, which was produced in the huge vat of ultrapure xenon that makes up XENON1T’s detector. First, the signal looks like it came from particles that collided mostly with the xenon atoms’ electrons. And second, each of these interactions dumped a few keV into the atom.

Nov 9, 2022

No, The James Webb Space Telescope Did Not Disprove the Big Bang (Eric Lerner is Delusional)

Posted by in categories: cosmology, internet

Something strange has been happening lately. Lots of people are under the impression that images from the James Webb Space Telescope have somehow proven big bang cosmology wrong. This is very stupid and objectively wrong, but it has caused a confusion among even pro-science people, who have been asking me if there is any legitimacy to such claims. I decided a brief debunk was in order, to shine a spotlight on the fraud behind this frenzy, briefly explain why such a claim is so ridiculous, and link to other resources for further information. Enjoy!

Lerner’s dumb article: https://iai.tv/articles/the-big-bang-didnt-happen-auid-2215
Astrophysicist Ethan Siegel explains how Lerner is a crackpot: https://bigthink.com/starts-with-a-bang/has-jwst-disproven-big-bang/
Cosmologist Brian Keating debunks Lerner: https://www.youtube.com/watch?v=iPna7WUODuo.
Astronomer Ned Wright debunks Lerner: https://www.astro.ucla.edu/~wright/lerner_errors.html.
Real scientists use an entire appendix to debunk Lerner’s mistakes: https://iopscience.iop.org/article/10.1086/529134/pdf.

Continue reading “No, The James Webb Space Telescope Did Not Disprove the Big Bang (Eric Lerner is Delusional)” »

Nov 9, 2022

Red-supergiant supernova images reveal secrets of an earlier universe

Posted by in categories: cosmology, evolution

An international research team led by the University of Minnesota Twin Cities has measured the size of a star dating back 2 billion years after the Big Bang, or more than 11 billion years ago. Detailed images show the exploding star cooling and could help scientists learn more about the stars and galaxies present in the early universe. The paper is published in Nature.

“This is the first detailed look at a at a much earlier epoch of the universe’s evolution,” said Patrick Kelly, a lead author of the paper and an associate professor in the University of Minnesota School of Physics and Astronomy. “It’s very exciting because we can learn in detail about an individual star when the universe was less than a fifth of its current age, and begin to understand if the stars that existed many billions of years ago are different from the ones nearby.”

The red supergiant in question was about 500 times larger than the sun, and it’s located at redshift three, which is about 60 times farther away than any other supernova observed in this detail.

Nov 9, 2022

A ten-year journey through the quark–gluon plasma and beyond

Posted by in categories: cosmology, evolution, nuclear energy, particle physics, quantum physics

Quantum chromodynamics (QCD) is one of the pillars of the Standard Model of particle physics. It describes the strong interaction – one of the four fundamental forces of nature. This force holds quarks and gluons – collectively known as partons – together in hadrons such as the proton, and protons and neutrons together in atomic nuclei. Two hallmarks of QCD are chiral symmetry breaking and asymptotic freedom. Chiral symmetry breaking explains how quarks generate the masses of hadrons and therefore the vast majority of visible mass in the universe. Asymptotic freedom states that the strong force between quarks and gluons decreases with increasing energy. The discovery of these two QCD effects garnered two Nobel prizes in physics, in 2008 and 2004, respectively.

High-energy collisions of lead nuclei at the Large Hadron Collider (LHC) explore QCD under the most extreme conditions on Earth. These heavy-ion collisions recreate the quark–gluon plasma (QGP): the hottest and densest fluid ever studied in the laboratory. In contrast to normal nuclear matter, the QGP is a state where quarks and gluons are not confined inside hadrons. It is speculated that the universe was in a QGP state around one millionth of a second after the Big Bang.

The ALICE experiment was designed to study the QGP at LHC energies. It was operated during LHC Runs 1 and 2, and has carried out a broad range of measurements to characterise the QGP and to study several other aspects of the strong interaction. In a recent review, highlights of which are described below, the ALICE collaboration takes stock of its first decade of QCD studies at the LHC. The results from these studies include a suite of observables that reveal a complex evolution of the near-perfect QGP liquid that emerges in high-temperature QCD. ALICE measurements also demonstrate that charm quarks equilibrate extremely quickly within this liquid, and are able to regenerate QGP-melted “charmonium” particle states. ALICE has extensively mapped the QGP opaqueness with high-energy probes, and has directly observed the QCD dead-cone effect in proton–proton collisions. Surprising QGP-like signatures have also been observed in rare proton–proton and proton–lead collisions.

Nov 9, 2022

James Webb Telescope Just Detected A Massive Structure Older Than The Universe

Posted by in categories: computing, cosmology, education

The James Webb Space Telescope has revolutionized the way we look at the universe in less.
than a year. Since its launch on December 25, 2021 multiple images captured by the largest.
telescope with potentially the highest infrared resolution and sensitivity have been going viral.
around the globe. James Webb is no doubt the most advanced telescope in human history. The.
telescope’s integrated science instrument module or ISIM framework provides it with electrical.
power, computing framework, cooling capability and structural stability. The ISIM also holds the.
four science instruments and the guide camera of the telescope. The infrared imager NIRICam.
serves as the Observatory’s wavefront sensor while the NIRISpec performs spectroscopy over.
the same wavelength range as that of NIRICam. The Mid-Infrared Instrument measures the mid.
to long infrared wavelengths and the Fine Guidance Center and Near Infrared Imager and.
Slitless Spectrograph is used to stabilize the line of sight during the science observations. So far.
the images and data received from the JWST are well worth the ten billion spent on building this.
miraculous invention. The first ever in ages from the telescope were revealed to the world on.
July 12, 2022 and experts believe these pictures from the largest and most powerful telescope.
in the world demonstrate Webb at its absolute best, fully prepared to further unravel the infrared universe. These included images of cosmic cliffs in the carina nebula, exoplanet WASP-06b.
southern ring nebula, Stephen’s quintet and the brilliant deep field view of the universe. But.
these were just the first batch, since then the James Webb Telescope has provided scientists.
with even more dazzling and awe-inspiring images of the cosmos. Some of these images have.
left astronomers and cosmologists quite confused. A flood of astronomical papers has been.
published since the revelation of these images and data from the JWST, a few of these papers.
have incited panic among the cosmologists. But what exactly is the reason behind this wave of.
panic? Well, it’s the assumption that the findings of James Webb Space Telescope are blatantly.
and repeatedly contradicting the Big Bang Theory. In order to better understand what’s going.
on, we first need to understand what the Big Bang exactly is.

Disclaimer Fair Use:
1. The videos have no negative impact on the original works.
2. The videos we make are used for educational purposes.
3. The videos are transformative in nature.
4. We use only the audio component and tiny pieces of video footage, only if it’s necessary.

Continue reading “James Webb Telescope Just Detected A Massive Structure Older Than The Universe” »

Nov 9, 2022

A New Tool for Finding Dark Matter Digs Up Nothing

Posted by in categories: cosmology, physics

Physicists are devising clever new ways to exploit the extreme sensitivity of gravitational wave detectors like LIGO. But so far, they’ve seen no signs of exotica.

Nov 8, 2022

NEW MASSIVE Black Hole Near Earth Discovered

Posted by in category: cosmology

Despite the fact that the Milky Way Galaxy happens to have hundreds of millions of black holes, we have been able to find only a dozen of them. The incognito nature of most black holes have frustrated astronomers as it not only makes it hard to research them but it also makes space a scary space.
These monstrous cosmic entities lurking in the dark could threaten our existence. Imagine how dangerous it would be to discover a gigantic bottomless pit, from which there is no escape, in our neighborhood?

And now we have discovered one of those monster black holes right out of our culdesac at a stone’s throw on the cosmic scale. Even the mere thought of something with such an intense gravitational force that even light cannot escape… so close to us is spine-chilling.

Continue reading “NEW MASSIVE Black Hole Near Earth Discovered” »

Nov 7, 2022

Ghost particles detected from the South Pole could reveal the inner workings of black holes

Posted by in categories: cosmology, particle physics

The latest findings are “the next big step towards the realization of neutrino astronomy.”

A black hole roughly 47 million light-years away, called NGC 1,068, is spewing out mysterious and elusive “ghost particles”, or neutrinos.

Neutrinos are notoriously difficult to detect as they require precise instruments deep below the Earth’s surface to avoid any interference from cosmic rays and background radiation.

Nov 7, 2022

A Black Hole’s Jets are Coming From a Region 2,000 km Away From the Singularity Itself

Posted by in categories: cosmology, singularity

In 1961 astronomers discovered a powerful x-ray source coming from the constellation Cygnus. Not knowing what it was, they named the source Cygnus X-1. It’s one of the strongest x-ray sources in the sky, and we now know it is powered by a stellar-mass black hole. Since it is only about 7,000 light-years away, it also gives astronomers an excellent view of how stellar-mass black holes behave. Even after six decades of study, it continues to teach us a few things, as a recent study in Science shows.

Cygnus X-1 is actually a binary system. The black hole itself is a 21 solar-mass stellar remnant, and it orbits a 41 solar-mass companion star. It’s a powerful x-ray source because material from the star is captured into an accretion disk of the black hole, which superheats the material and generates jets of plasma that flow away from the black hole. This is a common situation for black holes, but astronomers still don’t understand all the details of how this type of structure evolves.

For this study, the team used data from the Imaging X-Ray Polarimetry Explorer (IXPE), which can capture not just x-rays but also their polarization. When they combined this data with other observations of Cygnus X-1, they found the x-rays are emitted not from the regions along the jets, but from a 2,000 km region perpendicular to the jets. In other words, the accretion disk itself is the primary x-ray source. This supports the model where the innermost region of the accretion disk is what powers a black hole’s jets.

Nov 7, 2022

What is “early dark energy” and can it save the expanding Universe?

Posted by in categories: cosmology, information science, physics

You can imagine starting at the beginning, evolving the Universe forward according to the laws of physics, and measuring those earliest signals and their imprints on the Universe to determine how it has expanded over time. Alternatively, you can imagine starting here and now, looking out at the distant objects as we see them receding from us, and then drawing conclusions as to how the Universe has expanded from that.

Both of these methods rely on the same laws of physics, the same underlying theory of gravity, the same cosmic ingredients, and even the same equations as one another. And yet, when we actually perform our observations and make those critical measurements, we get two completely different answers that don’t agree with one another. This is, in many ways, the most pressing cosmic conundrum of our time. But there’s still a possibility that no one is mistaken and everyone is doing the science right. The entire controversy over the expanding Universe could go away if just one new thing is true: if there was some form of “early dark energy” in the Universe. Here’s why so many people are compelled by the idea.

Page 90 of 334First8788899091929394Last