Archive for the ‘cyborgs’ category: Page 104

Mar 21, 2016

Bionic Fingertip

Posted by in categories: cyborgs, transhumanism

This new bionic fingertip allows amputees to regain the sense of touch.

Read more

Mar 20, 2016

DARPA using peripheral nerve stimulation to accelerate learning

Posted by in categories: biotech/medical, cyborgs, neuroscience

The body’s branching network of peripheral nerves connects neurons in the brain and spinal cord to organs, skin, and muscles, regulating a host of biological functions from digestion to sensation to locomotion. But the peripheral nervous system can do even more than that, which is why DARPA already has research programs underway to harness it for a number of functions—as a substitute for drugs to treat diseases and accelerate healing, for example, as well as to control advanced prosthetic limbs and restore tactile sensation to their users.

Now, pushing those limits further, DARPA aims to enlist the body’s peripheral nerves to achieve something that has long been considered the brain’s domain alone: facilitating learning. The effort will turn on its head the usual notion that the brain tells the peripheral nervous system what to do.

The new program, Targeted Neuroplasticity Training (TNT), seeks to advance the pace and effectiveness of a specific kind of learning—cognitive skills training—through the precise activation of peripheral nerves that can in turn promote and strengthen neuronal connections in the brain. TNT will pursue development of a platform technology to enhance learning of a wide range of cognitive skills, with a goal of reducing the cost and duration of the Defense Department’s extensive training regimen, while improving outcomes. If successful, TNT could accelerate learning and reduce the time needed to train foreign language specialists, intelligence analysts, cryptographers, and others.

Read more

Mar 18, 2016

Breakthrough Knee Replacement

Posted by in categories: cyborgs, transhumanism

Forget bionic knees, this company will let you grow a new one.

Read more

Mar 16, 2016

Cyborg Heart Patch Replaces Dead Cardiac Tissue with Combination of Healthy Cells, Electronics

Posted by in categories: biotech/medical, cyborgs, electronics, health

Scientists at Tel Aviv University in Israel have developed a “cyborg heart patch” for replacing injured cardiac tissue. There has been considerable research on creating scaffolds seeded with cardiac cells, but simply delivering a bunch of cells in a neat package produces underwhelming results. The new patch developed at TAU integrates electronics alongside the cellular scaffold to both monitor and influence the activity of the cells.

The device can record intercellular electrical activity and deliver pulses to make the cardiomyocytes contract to a defined beat. Additionally, the researchers demonstrated that the electrodes within the patch can be covered with drugs to provide controlled release of medication right to the nearby heart cells.

This is certainly an impressive achievement that may herald a truly therapeutic approach for treating cardiac infarcts and other conditions of the heart.

Continue reading “Cyborg Heart Patch Replaces Dead Cardiac Tissue with Combination of Healthy Cells, Electronics” »

Mar 15, 2016

‘Cyborg heart patch’ combines electronics and living tissue

Posted by in categories: biotech/medical, computing, cyborgs, electronics, neuroscience, transhumanism

One of the latest inventions out of Tel Aviv University can patch up broken hearts. We’re talking about the real organs here, especially those damaged by myocardial infarction or heart attack. A team from the Israeli university created a “cyborg heart patch” that combines both living tissue and electronic components to replace the damaged parts of the organ. “It’s very science fiction, but it’s already here,” says one of its creators, Prof. Tal Dvir. “[W]e expect it to move cardiac research forward in a big way.” The patch can contract and expand like real heart tissue can, but it can do much, much more than that.

The electronic components allow doctors to remotely monitor their patients’ condition from afar. A physician could log into a computer and see if the implant is working as intended. If he senses that something’s amiss, he could release drugs to, say, regulate inflammation or fix the lack of oxygen. That sounds dangerous to us, since computers can be hacked. But the researchers are aiming to develop the patch further so it can regulate itself with no human intervention.

Dvir warns that the “practical realization of the technology may take some time.” For now, those suffering from cardiovascular diseases will have to rely on current treatment methods. The team is still in the midst of refining their cyborg heart patch. Plus, they’re looking at how to create bionic brain and spinal cord tissues using what they’ve learned so far to treat neurological conditions.

Continue reading “‘Cyborg heart patch’ combines electronics and living tissue” »

Mar 14, 2016

I attended the world’s first ‘cyborg fair’ — here’s what it was like

Posted by in category: cyborgs

Frieda Klotz visited the ‘world’s first cyborg fair’ with one question: are cyborgs a real thing, or are these people just kidding themselves?

Read more

Mar 12, 2016

How to build a body

Posted by in categories: cyborgs, transhumanism

It’s the holy grail in bionics—artificial limbs that function entirely intuitively.

Read more

Mar 12, 2016

Making the world’s first brain-controlled bionic leg

Posted by in categories: biotech/medical, cyborgs, electronics, neuroscience, transhumanism

Bionics: surgically inserted sensors controlling a prosthetic limb. Meet the man who sometimes forgets that his bionic leg is not his own.

Read more

Mar 11, 2016

Amputee feels texture with a ‘bionic’ fingertip

Posted by in categories: cyborgs, electronics, transhumanism

An amputee feels texture in real time: Signals from sensors in an artificial fingertip are converted to neural-like spikes and delivered to nerves in the upper arm. (credit: Ecole polytechnique fédérale de Lausanne)

Amputee Dennis Aabo Sørensen is the first person in the world to recognize texture (smoothness vs. roughness) using an artificial “bionic” fingertip surgically connected to nerves in his upper arm. The experimental system was developed by EPFL (Ecole polytechnique fédérale de Lausanne) and SSSA (Scuola Superiore Sant’Anna).

“The stimulation felt almost like what I would feel with my hand,” says Sørensen. “I felt the texture sensations at the tip of the index finger of my phantom hand.”

Read more

Mar 9, 2016

This bionic fingertip can restore the sense of touch for amputees

Posted by in categories: cyborgs, transhumanism

Read more