Feb 9, 2016
Bionic Spine
Posted by Shailesh Prasad in categories: biotech/medical, cyborgs, transhumanism
This bionic spine could help paralyzed patients walk again.
This bionic spine could help paralyzed patients walk again.
The US military is looking for ways to insert microscopic devices into human brains to help folks communicate with machines, like prosthetic limbs, with their minds. And now, DARPA’s saying scientists have found a way to do just that—without ripping open patients’ skulls.
In the DARPA-funded study, researchers at the University of Melbourne have developed a device that could help people use their brains to control machines. These machines might include technology that helps patients control physical disabilities or neurological disorders. The results were published in the journal Nature Biotechnology.
In the study, the team inserted a paperclip-sized object into the motor cortexes of sheep. (That’s the part of the brain that oversees voluntary movement.) The device is a twist on traditional stents, those teeny tiny tubes that surgeons stick in vessels to improve blood flow.
A team of researchers from Germany have developed what could become a revolutionary treatment for male infertility — they build spermbots. The key is a tiny metal helix that attaches to individual sperm cells, allowing them to move more effectively. You can think of it like a prosthetic tail for sperm.
Male fertility issues are usually not related to having an unusually low sperm count, but to having sperm with low motility. That is, they don’t get around very well. Each sperm has a copy of half of a man’s genome in the “head” portion. The tail is actually a flagella with banks of energy-producing mitochondria to power its movement. If either the tail or power source don’t work correctly, a sperm cell will have trouble reaching and fertilizing an egg.
Cool new story and video on transhumanism:
SANTA CLARA (CBS SF) –During Super Bowl 50, the world saw the Denver Broncos throttle the Carolina Panthers. The game’s MVP Von Miller dominated Cam Newton in a display of super human strength and skill.
You may not know it, but a growing number of engineers, biohackers and entrepreneurs hopes one day we’ll all be super human as well.
Continue reading “Engineers, Entrepreneurs Hoping To Re-Engineer Humans For Skill, Strength” »
A DARPA-funded research team has created a novel neural-recording device that can be implanted into the brain through blood vessels, reducing the need for invasive surgery and the risks associated with breaching the blood-brain barrier. The technology was developed under DARPA’s Reliable Neural-Interface Technology (RE-NET) program, and offers new potential for safely expanding the use of brain-machine interfaces (BMIs) to treat physical disabilities and neurological disorders.
In an article published in Nature Biotechnology, researchers in the Vascular Bionics Laboratory at the University of Melbourne led by neurologist Thomas Oxley, M.D., describe proof-of-concept results from a study conducted in sheep that demonstrate high-fidelity measurements taken from the motor cortex—the region of the brain responsible for controlling voluntary movement—using a novel device the size of a small paperclip.
This new device, which Oxley’s team dubbed the “stentrode,” was adapted from off-the-shelf stent technology—a familiar therapeutic tool for clearing and repairing blood vessels—to include an array of electrodes. The researchers also addressed the dual challenge of making the device flexible enough to safely pass through curving blood vessels, yet stiff enough that the array can emerge from the delivery tube at its destination.
Australian scientists hope that a tiny device just 3cm long and a few millimetres wide will enable paralysed patients to walk again by allowing them to control bionic limbs with the power of subconscious thought.
The new device, dubbed the “bionic spine”, is the size of a small paperclip and will be implanted in three patients at the Royal Melbourne hospital in Victoria next year. The participants will be selected from the Austin Health spinal cord unit, and will be the first humans to trial the device, which so far has only been tested in sheep.
Doctors will make a tiny cut in the neck of the patients and feed a catheter containing the bionic spine up through the blood vessels leading into the brain, until it rests on top of the motor cortex, the part of the brain where nerve impulses that initiate voluntary muscle movements come from. The catheter will then be removed, leaving the bionic spine behind.
Robots aren’t exactly known for their delicate touch, but soon, the stereotype of the non-gentle machine may change. Scientists say they have managed to develop a robot with “a new soft gripper” that makes use of a phenomenon known as electroadhesion — which is essentially the next best thing to giving robots opposable thumbs. According to EPFL scientists, these next-gen grippers can handle fragile objects no matter what their shape — everything from an egg to a water balloon to a piece of paper is fair game.
This latest advance in robotics, funded by NCCR Robotics, may allow machines to take on unprecedented roles. “This is the first time that electroadhesion and soft robotics have been combined together to grasp objects,” said Jun Shintake, a doctoral student at EPFL. Potential applications include handling food, capturing debris (both in space and at home), or even being integrated into prosthetic limbs.
https://youtube.com/watch?v=QNCxKbKLVCo
A new type of powered exoskeleton aims to extend the benefits of the technology to people at a much lower price tag.
Artificial skin is saving thousands of lives of burn victims.
The San Jose Mercury News took a look at SRI’s collaboration with Yamaha to develop Motobot, the first motorcycle-riding humanoid robot. “Consider it a high-tech diagnostic tool for motorcycles that just happens to look like a cyborg.”