Toggle light / dark theme

My new story for The Huffington Post on the virtue of reason and asking: Why?.


2016-04-15-1460696511-7718468-futureimage.jpg
Image of the future — By Smart Gadget Technology

The human race is on the threshold of so much revolutionary change. It’s mostly due to the emerging field of transhumanism: a social movement that aims to use science and technology to radically modify the human body—and modify the human experience. I get asked all the time: What is the best way to handle such changes—like the merging of humans with machines to make cyborgs? Or spending more time in virtual reality then normal reality? Or biohacker brain implants that let us use telepathy with one another (which eventually will lead us all to be connected via a hive mind)?

I think it’s easiest to let Jethro Knights—protagonist of my philosophical, Libertarian novel The Transhumanist Wager—answer. Below is a modified and condensed version of a speech he gives to the world, near the end of the book:

There are two all-important ways to navigate a correct path in the new transhuman future: The first is to constantly use the utmost reasoning of which our brains are capable while negotiating our way through life; the second is to incessantly question everything.

Nthing new; nice to see more folks waking up.


We’re moving beyond just prosthetics and wearable tech. Soon, we’ll all by cyborgs in one way or another.

From The Six Million Dollar Man to Inspector Gadget to Robocop, humans with bionic body parts have become commonplace in fiction. In the real world, we use technology to restore functionality to missing or defective body parts; in science fiction, such technology gives characters superhuman abilities. The future of cyborgs may hinge on that distinction.

The Defense Advanced Research Projects Agency (DARPA) plans to develop a brain implant that links human brains to computers. Under the Obama administration’s Brain Initiative, DARPA has developed eight programs designed to enhance human physical and cognitive capabilities. The Neural Engineering System Design program seeks to “bridge the bio-electronic divide” via a small implant that acts as a translator between the brain and the digital world, giving humans improved sight and hearing.

Read more

Hmmm; not sure if I can watch given my tolerance level of seeing blood.


Cutting-edge technology has a way of snaking itself into the medical field. Over the past few years, for example, we’ve seen 3D printers used to create prescription medication, prosthetic limbs, casts, replacement bones, homemade cosmetic braces and even cartilage implants.

Now, we’re beginning to see some of the ways that virtual reality will impact modern medicine with a company by the name of Medical Realities leading the way.

Co-founded by Dr. Shafi Ahmed, Medical Realities is a medical training firm that specializes in virtual reality, augmented reality and serious games using consumer-level devices like the Oculus Rift. In just a few days, he and his team of medical professionals will be livestreaming the removal of a tumor from the colon of a man in his 70s.

Read more

April 5, 2016, New York — People are using brain-machine interfaces to restore motor function in ways never before possible — through limb prosthetics and exoskletons. But technologies to repair and improve cognition have been more elusive. That is rapidly changing with new tools — from fully implantable brain devices to neuron-eavesdropping grids atop the brain — to directly probe the mind.

These new technologies, being presented today at the Cognitive Neuroscience Society (CNS) annual conference in New York City, are mapping new understandings of cognition and advancing efforts to improve memory and learning in patients with cognitive deficits.

Eavesdropping on neurons

“A new era” of electrophysiology is now upon us, says Josef Parvizi of Stanford University who is chairing the CNS symposium on the topic. “We have gotten a much sharper view of the brain’s electrophysiological activity” using techniques once relegated to science fiction.

Read more

Imagine mastering instruments, learning to tango and becoming fluent in French — in months, weeks, even days. No, it’s not science fiction: A new program by the government’s Defense Advanced Research Projects Agency aims to tweak your nervous system to make you learn better and faster.

The goal of the new DARPA program, called Targeted Neuroplasticity Training, is to stimulate your peripheral nervous system, the network of nerves on the outside of your brain and spinal cord, to facilitate the development of cognitive skills. If it works, TNT could become a faster and cheaper way to train people on foreign languages, intelligence analysis, cryptography and more.

Read more

Thanks to the electrodes system a stable signal is obtained, which allows precise control like handling an egg without breaking. It also provides sensations as if it were a real hand.

The first prosthesis in the world that connects directly to the bone, nerves and muscles, allows the person to experience sensations, free mobility and is handled using the mind.

It was created by the Mexican Max Ortiz Catalan, who lives in Sweden, the device becomes an extension of the human body through osseointegration, this means that it connects directly to the bone via a titanium implant, and thanks to the neuronal and muscle binding interfaces a robust and intuitive control of the artificial hand is achieved, this way just by thinking about it is possible to move the limb.

Read more

The body’s branching network of peripheral nerves connects neurons in the brain and spinal cord to organs, skin, and muscles, regulating a host of biological functions from digestion to sensation to locomotion. But the peripheral nervous system can do even more than that, which is why DARPA already has research programs underway to harness it for a number of functions—as a substitute for drugs to treat diseases and accelerate healing, for example, as well as to control advanced prosthetic limbs and restore tactile sensation to their users.

Now, pushing those limits further, DARPA aims to enlist the body’s peripheral nerves to achieve something that has long been considered the brain’s domain alone: facilitating learning. The effort will turn on its head the usual notion that the brain tells the peripheral nervous system what to do.

The new program, Targeted Neuroplasticity Training (TNT), seeks to advance the pace and effectiveness of a specific kind of learning—cognitive skills training—through the precise activation of peripheral nerves that can in turn promote and strengthen neuronal connections in the brain. TNT will pursue development of a platform technology to enhance learning of a wide range of cognitive skills, with a goal of reducing the cost and duration of the Defense Department’s extensive training regimen, while improving outcomes. If successful, TNT could accelerate learning and reduce the time needed to train foreign language specialists, intelligence analysts, cryptographers, and others.

Read more