БЛОГ

Archive for the ‘cyborgs’ category: Page 13

Nov 7, 2023

Softbotics and the Past: Engineering the Movement of 450-Million-Year-Old Organisms

Posted by in categories: bioengineering, biological, cyborgs, robotics/AI, transhumanism

A recent study published in the Proceedings of the National Academy of Sciences examines the use of Softbotics to mimic the movements of the ancient marine organism, pleurocystitid, which is estimated to have existed approximately 450 million years ago and is believed to be one of the first marine invertebrates to control their movements with a muscular stem. This study was led by researchers from Carnegie Mellon University and holds the potential to help scientists use a new field known as Paleobionics to better understand the evolutionary history of extinct organisms with paleontological evidence.

Image of a Pleurocystitid fossil (inset) and the pleurocystitid robot replica developed for the study. (Credit: Carnegie Mellon University College of Engineering)

“Softbotics is another approach to inform science using soft materials to construct flexible robot limbs and appendages,” said Dr. Carmel Majidi, who is a Professor of Mechanical Engineering at Carnegie Mellon University and lead author of the study. “Many fundamental principles of biology and nature can only fully be explained if we look back at the evolutionary timeline of how animals evolved. We are building robot analogues to study how locomotion has changed.”

Nov 6, 2023

Neural Implant Translates Brainwaves Into Words

Posted by in categories: biotech/medical, cyborgs, robotics/AI

Summary: A new speech prosthetic offers hope for those with speech-impairing neurological disorders.

By converting brain signals into speech using high-density sensors and machine learning, the technology represents a significant advancement over current slower communication aids.

Though still in early stages, the device has achieved a 40% accuracy in decoding spoken data during limited trials and is moving towards a cordless design.

Oct 30, 2023

Human arm dynamics can help robots assemble satellites

Posted by in categories: cyborgs, robotics/AI, satellites, transhumanism

The researchers built a dynamic data acquisition platform to capture human arm motion during assembly tasks.

A team of researchers from the Beijing Institute of Technology has developed a new method to control robots that can assemble satellites in space. The technique is inspired by the human arm, which can adjust its damping to perform different tasks with precision and stability. The researchers published their findings in Cyborg and Bionic Systems.


Space operations with robots and challenges

Continue reading “Human arm dynamics can help robots assemble satellites” »

Oct 27, 2023

UBC, Honda researchers develop robot arm with human skin-like sensors

Posted by in categories: biotech/medical, cyborgs, robotics/AI

“As sensors continue to evolve to be more skin-like, there is a need for robots to be smarter. Developments in sensors and artificial intelligence will need to go hand in hand”

Scientists at the University of British Columbia and Honda’s research institute have revealed the creation of a revolutionary soft sensor that mimics human skin in a press release. This highly sensitive, smart, and stretchable sensor is poised to reshape how machines interact with the world.

Offering a myriad of applications, the soft sensor takes cues from human skin in terms of both sensitivity and texture. It can make actions such as picking up a piece of soft fruit possible when applied to the surface of a prosthetic or robotic arm.

Oct 20, 2023

Scientists Pump Up Lab-Grown Muscles for Robots With a New Magnetic Workout

Posted by in categories: biotech/medical, cyborgs, robotics/AI

Unfortunately, these precise cell arrangements are also why artificial muscles are difficult to recreate in the lab. Despite being soft, squishy, and easily damaged, our muscles can perform incredible feats—adapt to heavy loads, sense the outside world, and rebuild after injury. A main reason for these superpowers is alignment—that is, how muscle cells orient to form stretchy fibers.

Now, a new study suggests that the solution to growing better lab-grown muscles may be magnets. Led by Dr. Ritu Raman at the Massachusetts Institute of Technology (MIT), scientists developed a magnetic hydrogel “sandwich” that controls muscle cell orientation in a lab dish. By changing the position of the magnets, the muscle cells aligned into fibers that contracted in synchrony as if they were inside a body.

The whole endeavor sounds rather Frankenstein. But lab-grown tissues could one day be grafted into people with heavily damaged muscles—either from inherited diseases or traumatic injuries—and restore their ability to navigate the world freely. Synthetic muscles could also coat robots, providing them with human-like senses, flexible motor control, and the ability to heal after inevitable scratches and scrapes.

Oct 20, 2023

Creating Sapient Technology and Cyborg Rights Should Happen Soon

Posted by in categories: 3D printing, bioengineering, bioprinting, biotech/medical, cyborgs, existential risks, genetics, robotics/AI, transhumanism

Here’s my latest Opinion piece just out for Newsweek…focusing on cyborg rights.


Over the past half-century, the microprocessor’s capacity has doubled approximately every 18–24 months, and some experts predict that by 2030, machine intelligence could surpass human capabilities. The question then arises: When machines reach human-level intelligence, should they be granted protection and rights? Will they desire and perhaps even demand such rights?

Beyond advancements in microprocessors, we’re witnessing breakthroughs in genetic editing, stem cells, and 3D bioprinting, all which also hold the potential to help create cyborg entities displaying consciousness and intelligence. Notably, Yale University’s experiments stimulating dead pig brains have ignited debates in the animal rights realm, raising questions about the ethical implications of reviving consciousness.

Continue reading “Creating Sapient Technology and Cyborg Rights Should Happen Soon” »

Oct 19, 2023

A highly integrated bionic hand with neural control and feedback for use in daily life

Posted by in categories: cyborgs, neuroscience, transhumanism

A neuromusculoskeletal hand prosthesis grants long-term stable neural control, sensory feedback, and skeletal attachment.

Oct 16, 2023

This award-winning 3D printable prosthetic is open access

Posted by in categories: biotech/medical, business, cyborgs, neuroscience

In today’s world, there is much to be admired in someone who refuses to make a profit out of a good idea for the greater good. David Edquilang invented a new type of finger prosthesis called Lunet that has earned him awards around the world but he plans on making the design open access to benefit those who need it most.

Helping the greatest number of people

“Not every good idea needs to be turned into a business. Sometimes, the best ideas just need to be put out there,” said Edquilang in a statement issued by his university. “Medical insurance will often not cover the cost of a finger prosthesis, since it is not considered vital enough compared to an arm or leg. Making Lunet available online for free will allow it to help the greatest number of people.”

Oct 16, 2023

Bionic hand merges with user’s nervous and skeletal systems, remaining functional after years of daily use

Posted by in categories: biotech/medical, cyborgs, transhumanism

Karin’s life took a dramatic turn when a farming accident claimed her right arm more than 20 years ago. Since then, she has endured excruciating phantom limb pain. “It felt like I constantly had my hand in a meat grinder, which created a high level of stress and I had to take high doses of various painkillers.”

In addition to her intractable pain, she found that conventional prostheses were uncomfortable and unreliable, and thus of little help in daily life. All this changed when she received groundbreaking bionic technology that allowed her to wear a much more functional prosthesis comfortably all day. The higher integration between the bionics and Karin’s residual limb also relieved her pain. “For me, this research has meant a lot, as it has given me a better life.”

Mechanical attachment and reliable control are two of the biggest challenges in artificial limb replacement. People with limb loss often reject even the sophisticated prostheses commercially available due to these reasons, after experiencing painful and uncomfortable attachment with limited and unreliable controllability.

Oct 13, 2023

Research unveils stretchable high-resolution user-interactive synesthesia displays for visual–acoustic encryption

Posted by in categories: cyborgs, encryption, space

The future of human-machine interfaces is on the cusp of a revolution with the unveiling of a groundbreaking technology—a stretchable high-resolution multicolor synesthesia display that generates synchronized sound and light as input/output sources. A research team, led by Professor Moon Kee Choi in the Department of Materials Science and Engineering at UNIST, has succeeded in developing this cutting-edge display using transfer-printing techniques, propelling the field of multifunctional displays into new realms of possibility.

The team’s research is published in the journal Advanced Functional Materials.

Traditionally, multifunctional displays have been confined to visualizing mechanical and electrical signals in light. However, this pioneering stretchable synesthesia shatters preconceived boundaries by offering unparalleled optical performance and precise pressure levels. Its inherent stretchability ensures seamless operation under both static and dynamic deformation, preserving the integrity of the sound relative to the input waveform.

Page 13 of 132First1011121314151617Last