Toggle light / dark theme

Will implantable brain-computer interfaces soon benefit people with motor impairments?

A review published in Advanced Science highlights the evolution of research related to implantable brain-computer interfaces (iBCIs), which decode brain signals that are then translated into commands for external devices to potentially benefit individuals with impairments such as loss of limb function or speech.

A comprehensive systematic review identified 112 studies, nearly half of which have been published since 2020. Eighty iBCI participants were identified, mostly participating in studies concentrated in the United States, but with growing numbers of studies from Europe, China, and Australia.

The analysis revealed that iBCI technologies are being used to control devices such as robotic prosthetic limbs and consumer .

Bionic knee allows better movement for amputees

A new bionic knee allows amputees to walk faster, climb stairs more easily, and adroitly avoid obstacles, researchers reported in the journal Science.

The new prothesis is directly integrated with the person’s muscle and , enabling greater stability and providing more control over its movement, researchers said.

Two people equipped with the prosthetic said the limb felt more like a part of their own body, the study says.

The ‘mind-bending’ bionic arm powered by AI

I was born without lower arms and legs, so I’ve been around prosthetics of all shapes and sizes for as long as I can remember.

I’ve actively avoided those designed for upper arms for most of my adult life, so have never used a bionic hand before.

But when I visited a company in California, which is seeking to take the technology to the next level, I was intrigued enough to try one out — and the results were, frankly, mind-bending.

Prosthetic limbs have come a long way since the early days when they were fashioned out of wood, tin and leather.

Modern-day replacement arms and legs are made of silicone and carbon fibre, and increasingly they are bionic, meaning they have various electronically controlled moving parts to make them more useful to the user. (Feb 2024)


BBC Click reporter Paul Carter tries out a high-tech prosthetic promising a ‘full range of human motion’

/* */