Actuators inspired by cucumber plants could make robots move more naturally in response to their environments, or be used for devices in inhospitable places.

The limited ability of microrobots to assist drugs in entering cells hinders their therapeutic efficacy. To address this, a research team, reporting in Cyborg and Bionic Systems, has introduced the cancer-targeting molecule folic acid (FA) to microrobots to promote drug uptake by cancer cells via receptor-ligand-mediated endocytosis. This results in a drug delivery system that can locate lesion areas with magnetic fields and deliver loaded drugs into the cytoplasm through endocytosis.
Untethered microrobots have shown remarkable achievements in various fields such as minimally invasive surgery, drug delivery, environmental remediation, and tissue engineering. Magnetic field actuation is a widely used method due to its good biosafety, deeper tissue penetration, and high temporal and spatial control.
However, practical problems arise when microrobots delivering drugs may only be able to deliver the drugs to the area around the cells but cannot assist the drugs to enter the cells. This limitation could potentially reduce the effectiveness of the treatment since the drugs may not reach the intended targets within the cells.
Worth a listen to understand the current reality and the future potential:
Go to https://ground.news/sabine to stay fully informed on breaking news, compare coverage and avoid media bias. Subscribe using my link to get 30% off the Vantage plan for unlimited access.
Technological enhancements and implants are becoming more popular amongst a group of transhumanists who call themselves “grinders”. Are we coming closer to an age of cyborgs? Is genetic screening and editing ethical? Has biohacking lost all meaning? What are nootropics? That’s what we’ll talk about today.
💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ https://www.patreon.com/Sabine.
📩 Sign up for my weekly science newsletter. It’s free! ➜ https://sabinehossenfelder.com/newsletter/
🔗 Join this channel to get access to perks ➜
https://www.youtube.com/channel/UC1yNl2E66ZzKApQdRuTQ4tw/join.
🖼️ On instagram ➜ https://www.instagram.com/sciencewtg/
The four examples from the introduction are here:
A new device can recreate the refractive errors of a myopic eye—one that displays nearsightedness—allowing scientists to test lenses designed to slow down the progression of the condition.
A team of researchers including Augusto Arias-Gallego at the University of Tübingen, Germany, has developed a device for mimicking the refractive errors of a nearsighted eye [1]. The team demonstrates the ability of this “artificial eye” to characterize the real-world performance of eyeglasses designed to slow the worsening of the condition in children. The team hopes that the insight gained with their system will aid in the development of more effective iterations of a potentially sight-saving technology. “By characterizing the prototype lenses in the lab, we can easily check if the designs are good candidates to slow myopia progression,” Arias-Gallego says. “That could help millions of children.”
Poor eyesight is on the rise. Today, one third of the world’s population suffers from some form of visual impairment, up from one fifth a decade ago. By 2050, estimates indicate that the fraction will increase to over one in two. The most common vision condition is nearsightedness, also known as myopia, which leads moderate sufferers unable to resolve objects more than a few feet away. When left untreated myopia can develop into sight-threatening conditions such as retinal detachment.
By implanting electrodes into the brains of grasshoppers, scientists were able to harness the insects’ sense of smell for the purpose of explosive detection.
In two new studies, North Carolina State University researchers have designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, published in Actuators, the researchers focused on the materials’ influence on artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.
In the second, proof-of-concept study published in Biomimetics, the researchers tested their fibers as scaffolds for live cells. Their findings suggest the fibers—known as “fiber robots”—could potentially be used to develop 3D models of living, moving systems in the human body.
“We found that our fiber robot is a very suitable scaffold for the cells, and we can alter the frequency and contraction ratio to create a more suitable environment for cells,” said Muh Amdadul Hoque, graduate student in textile engineering, chemistry and science at NC State. “These were proof-of concept studies; ultimately, our goal is to see if we can study these fibers as a scaffold for stem cells, or use them to develop artificial organs in future studies.”
Australian researchers have used the “wonder material” graphene to develop a sensor that could enable anyone to control robot technology with their minds.
“The hands-free, voice-free technology works outside laboratory settings, anytime, anywhere,” said co-developer Francesca Iacopi. “It makes interfaces such as consoles, keyboards, touchscreens, and hand-gesture recognition redundant.”
The challenge: Brain-computer interfaces (BCIs) are systems that translate brain activity into commands for machines, usually for medical reasons. A person with a limb amputation can use one to control a prosthetic with their mind, while someone with paralysis could use a BCI to “type” words on a computer screen just by thinking about them.
Video I found on wearable robots.
Introducing an innovative solution that enhances your mobility WIM:
- It provides easy and safe walking.
- It enables effective exercise.
- It guides and reinforces your gait performance.
Specification.
- Light weight 1.4kg.
- Portable small size 24cm x 10cm.
- World best performance 20% energy saving (Level ground walking)
www.wirobotics.com.
[email protected].
#wearabledevices #robot #WearableRobot #Exoskeleton #wearablemobility
Summary: Researchers have developed an artificial electronic skin (e-skin) capable of converting sensory inputs into electrical signals that the brain can interpret. This skin-like material incorporates soft integrated circuits and boasts a variety of sensory abilities, including temperature and pressure detection.
This advance could facilitate the creation of prosthetic limbs with sensory feedback or advanced medical devices. The e-skin operates at a low voltage and can endure continuous stretching without losing its electrical properties.