БЛОГ

Archive for the ‘cyborgs’ category: Page 33

Jun 22, 2022

Robotic lightning bugs take flight

Posted by in categories: climatology, cyborgs, mobile phones, robotics/AI

From there, they ran flight tests using a specially designed motion-tracking system. Each electroluminescent actuator served as an active marker that could be tracked using iPhone cameras. The cameras detect each light color, and a computer program they developed tracks the position and attitude of the robots to within 2 millimeters of state-of-the-art infrared motion capture systems.

“We are very proud of how good the tracking result is, compared to the state-of-the-art. We were using cheap hardware, compared to the tens of thousands of dollars these large motion-tracking systems cost, and the tracking results were very close,” Kevin Chen says.

In the future, they plan to enhance that motion tracking system so it can track robots in real-time. The team is working to incorporate control signals so the robots could turn their light on and off during flight and communicate more like real fireflies. They are also studying how electroluminescence could even improve some properties of these soft artificial muscles, Kevin Chen says.

Jun 18, 2022

Making Mind Reading Possible: Invention Allows Amputees To Control a Robotic Arm With Their Mind

Posted by in categories: biotech/medical, cyborgs, robotics/AI

A University of Minnesota research team has made mind-reading possible through the use of electronics and AI.

Researchers at the University of Minnesota Twin Cities have created a system that enables amputees to operate a robotic arm using their brain impulses rather than their muscles. This new technology is more precise and less intrusive than previous methods.

Continue reading “Making Mind Reading Possible: Invention Allows Amputees To Control a Robotic Arm With Their Mind” »

Jun 12, 2022

A team of researchers led by an Indian-origin engineer developed an electronic skin that feels pain

Posted by in categories: computing, cyborgs

Researchers have created an electronic skin that can feel pain. The working of artificial skin is based on synaptic transistors that eliminate the response time.

Jun 9, 2022

Scientists grew living human skin around a robotic finger

Posted by in categories: cyborgs, robotics/AI

In the hopes of one day building super realistic cyborgs, researchers built a robotic finger that wears living human skin.

Jun 9, 2022

New Artificial Skin Lets Bionic Arm Or AI Robot Touch & Feel With Extreme Sensitivity

Posted by in categories: biotech/medical, cyborgs, robotics/AI, singularity, transhumanism

New artificial skin for bionic arm or AI robot | breakthrough photonic chip processes 2 billion images per second without memory device.


AI news includes new artificial skin to let AI robot, bionic arm or prosthetic limb feel with extreme touch sensitivity. New photonic chip allows AI to process and classify 2 billion images per second without needing storage device.

Continue reading “New Artificial Skin Lets Bionic Arm Or AI Robot Touch & Feel With Extreme Sensitivity” »

Jun 7, 2022

Restoring a lost sense of touch | Podcast | Overheard at National Geographic

Posted by in categories: biotech/medical, cyborgs, military, robotics/AI

This is a fantastic podcast exploration of a rapidly maturing, wildley varied fields of science, the military, medicine, the industrialization, exploration, and colonization of our solar system, and the hope for, path to, and purpose of the successful creation of a posthuman, post scarcity future. Its a future destination for humanity that will require a seemless, successful integration of our human biology with artificial intelligence and advanced nonbiological — AND artificially biological — mechanical systems that in one way or another all pass through a very few neccessary technological achievements. In this case it is the seemless communication in both directions of the biological, in this specific case it’s the human sense of touch.


When Brandon Prestwood’s left hand was caught in an industrial conveyor belt six years ago, he lost his arm. Scientists are slowly unraveling the science of touch by trying to tap into the human nervous system and recreate the sensations of pressure for people like Prestwood. After an experimental surgery, Brandon’s prosthetic arm was upgraded with a rudimentary sense of touch—a major development in technology that could bring us all a little closer together.

Continue reading “Restoring a lost sense of touch | Podcast | Overheard at National Geographic” »

Jun 3, 2022

Nanostructured fibers can impersonate human muscles

Posted by in categories: biotech/medical, cyborgs, nanotechnology, robotics/AI

Mimicking the human body, specifically the actuators that control muscle movement, is of immense interest around the globe. In recent years, it has led to many innovations to improve robotics, prosthetic limbs and more, but creating these actuators typically involves complex processes, with expensive and hard-to-find materials.

Researchers at The University of Texas at Austin and Penn State University have created a new type of fiber that can perform like a muscle actuator, in many ways better than other options that exist today. And, most importantly, these muscle-like fibers are simple to make and recycle.

In a new paper published in Nature Nanotechnology (“Nanostructured block copolymer muscles”), the researchers showed that these fibers, which they initially discovered while working on another project, are more efficient, flexible and able to handle increased strain compared to what’s out there today. These fibers could be used in a variety of ways, including medicine and robotics.

May 30, 2022

15 Medical Robots That Are Changing the World

Posted by in categories: biotech/medical, cyborgs, robotics/AI

May 30, 2022

Smart films facilitate human-machine interaction

Posted by in categories: cyborgs, entertainment, mobile phones

Imagine this: A smooth touchscreen display placed on top of a thin silicone polymer film suddenly generates the feeling of a tiny raised button under the user’s finger. Or how about the idea of wearing that same polymer film like a second skin? If used to line an industrial glove, the film can provide valuable feedback by gesture recognition and by sending tactile signals, such as pulses or vibrations, to the wearer. The research team led by Professor Stefan Seelecke of Saarland University will be at this year’s Hannover Messe, the industrial trade fair running from 30 May to 2 June, where the team will be demonstrating how smart tactile surfaces are now being used as novel human-machine interfaces.

Seelecke’s research team at Saarland University are using thin silicone films to give surfaces some very novel capabilities. The technology, which is able to create the sensation of a tactile “button” or “slider” on flat glass display screens, is literally bringing a new dimension to touchscreen interactions. The is able to change shape on demand to create the feeling of a raised button or a key on the surface of the display that the user can then use, for example, to navigate around a page or to enter data.

“Using this technology, we can make the user interfaces of smart phones, information screens or household devices more user friendly,” said Seelecke, who heads the Intelligent Material Systems Lab at Saarland University. If a user feels a pulse or vibration under their fingertips, they can then respond by tapping the screen. And because the user also experiences the slight resistance that we feel when we press a ‘real’ button or switch, they know that their response has been successful. For the blind and partially sighted, this sort of physical feedback is not a gimmick, but hugely valuable in their day to day lives.

May 28, 2022

Researchers create digital humans that learn complex movements

Posted by in categories: biotech/medical, cyborgs, health, robotics/AI

Researchers at Meta’s Artificial Intelligence Research Lab (Facebook) in the U.S. and at the University of Twente’s Neuromechanical Modelling and Engineering Lab in the Netherlands (led by Prof.dr.ir Massimo Sartori), have co-developed the open-source framework MyoSuite, which combines advanced musculoskeletal models with advanced artificial intelligence (AI). The AI-powered digital models in MyoSuite can learn to execute complex movements and interactions with assistive robots, that would otherwise require long experimentations on real human subjects.

Modeling and simulation are now as important to human health technologies as they have been for the advancement of modern automotive industry. Prof. Massimo Sartori: “If we could predict the outcome of a robotic therapy beforehand, then we could optimize it for a patient and deliver a truly personalized and cost-effective treatment.”

MyoSuite supports the co-simulation of AI-powered musculoskeletal systems physically interacting with such as exoskeletons. With MyoSuite you can simulate biological phenomena, e.g., muscle fatigue, muscle sarcopenia, tendon tear and tendon reaffirmation. Moreover, you can simulate how assistive robots could be designed and controlled to restore movement following impairment.

Page 33 of 128First3031323334353637Last