Toggle light / dark theme

SpaceX is working towards the goal of landing both the super heavy booster and Starship on a drone ship in the ocean, which has the potential to revolutionize space travel and support their mission for greater sustainability and reusability Questions to inspire discussion What is SpaceX’s goal for landing the super heavy booster and Starship?

Unmanned aerial vehicles (UAVs), commonly known as drones, are now used to capture images and carry out a wide range of missions in outdoor environments. While there are now several UAV designs with different advantages and characteristics, most conventional aerial robots are underactuated, meaning that they have fewer independent actuators than their degrees of freedom (DoF).

Underactuated systems are often more cost-effective and can be controlled using simpler control strategies than overactuated systems (i.e., robots that have more independent actuators than their DoF). Nonetheless, they are often less reliable and not as capable of precisely controlling their position and orientation.

Researchers at Tecnalia’s Basque Research and Technology Alliance (BRTA) in Spain recently developed a new overactuated aerial that can independently control the position and orientation of its main body. This robot, introduced in a paper published in Robotics and Autonomous Systems, has four quadrotors that cooperatively carry its central body.

As the Pentagon makes a push toward scaling production of autonomous systems and weapons, Anduril Industries is accelerating its own manufacturing capabilities through a new software-based production hub called Arsenal.

The California-based defense technology company announced Wednesday it will build the first Arsenal facility in the U.S., using funding from a recent $1.5 billion Series F investment round. Chris Brose, Anduril’s chief strategy officer, told reporters the firm’s goal is to consolidate manufacturing in order to “hyperscale” production across its product lines, including uncrewed combat drones and autonomous underwater vehicles.

“When we say hyperscale, we mean the ability to produce tens of thousands of a given system,” he said in a briefing. “This is the target that we’re setting for ourselves right now.”

Wings aren’t the only things that make birds so successful. If it weren’t for their feet, how would pelicans skimming the tips of waves be able to suddenly land on a pier piling, or owls grab a mouse at 64 kilometers per hour without missing a beat? Robot birds must be able to do the same—something that has been a challenge, until now.

In a new study, researchers analyzed the anatomy and behavior of a tiny American parrot called a parrotlet and peregrine falcons, two species known for their expert footwork. They then designed “SNAG” (Stereotyped Nature-Inspired Aerial Grasper) — a pair of jointed legs attached to feet with jointed talons that automatically close around any object they encounter, be it a dowel, branch, or tennis ball.

“Compared with other traditional methods, the proposed has lower computational complexity, faster operation speed, weak influence of light, and strong ability to locate dirt,” the research group said. “The improved path planning algorithm used in this study greatly improves the efficiency of UAV inspection, saves time and resources, reduces operation and maintenance costs, and improves the corresponding operation and maintenance level of photovoltaic power generation.”

The novel approach uses mathematical morphologies for image processing, such as image enhancement, sharpening, filtering, and closing operations. It also uses image histogram equalization and edge detection, among other methods, to find the dusted spot. For path optimization, it uses an improved version of the A (A-star) algorithm.

This remarkable miniature rotorcraft is so lightweight and efficient that it can lift its own mass given nothing but sunlight. The entire thing weighs about as much as four paperclips, and it can fly all day if the sun’s shining.

Researchers at China’s Beihang University and the Center of Advanced Aero-Engine, have unveiled CouloumbFly, a palm-sized miniature rotorcraft that weighs just 4.21 g (0.15 oz) – yet still boasts a rotor diameter of 20 cm (7.9 in), making it around 600 times lighter than any other comparable small solar-powered drone.

In tethered testing under natural sunlight conditions, CouloumbFly got itself airborne within a second and managed an hour of flight without power diminishing, before a mechanical failure brought it back down. Not much of a big deal if it was a glide-capable winged drone – but this is a miniature helicopter that’s entirely responsible for generating its own lift, and managing that on solar energy alone is an extraordinary feat.

What happens when humanity begins living in space, building larger space stations, and creating a purely space based economy. Space drones will deliver goods between stations, farming stations will grow food, and space hotels will host celestial events and viewing parties for eclipses and welcoming parties for spaceships returning from Mars.

This sci-fi documentary takes a look at the future of space stations and space technology, starting with the retiring of the International Space Station, and ending with the construction of the largest rotating ring world space station, with its own atmosphere and lakes that evaporate creating clouds and rain.

Other topics in this video include: stealth based technology and metamaterials, the future of Starship Mark 2, cryo refuelling in space, Moon space stations, the Mars Colony, asteroid mining station, future space telescope stations, design concepts, and cryo sleep.

PATREON