БЛОГ

Archive for the ‘encryption’ category: Page 16

Nov 9, 2022

Paving the Way for Satellite Quantum Communications

Posted by in categories: computing, encryption, quantum physics, satellites, security

A series of demonstrations by Micius—a low-orbit satellite with quantum capabilities—lays the groundwork for a satellite-based quantum communication network.

Few things have captured the scientific imagination quite like the vastness of space and the promise of quantum technology. Micius—the Chinese Academy of Science’s quantum communications satellite launched in 2016—has connected these two inspiring domains, producing a string of exciting first demonstrations in quantum space communications. Reviewing the efforts leading up to the satellite launch and the major outcomes of the mission, Jian-Wei Pan and colleagues at the University of Science and Technology of China provide a perspective on what the future of quantum space communications may look like [1]. The success of this quantum-satellite mission proves the viability of several space-based quantum communications protocols, providing a solid foundation for future improvements that may lead to an Earth-spanning quantum communications network (Fig. 1).

Photons, the quanta of light, are wonderful carriers of quantum information because they are easy to manipulate and travel extremely fast. They can be created in a desired quantum state or as the output of some quantum sensor or quantum computer. Quantum entanglement between multiple photons—the nonclassical correlation between their quantum states—can be amazingly useful in quantum communications protocols such as quantum key distribution (QKD), a cryptography approach that can theoretically guarantee absolute information security. QKD schemes have been demonstrated on distances of a few hundreds of kilometers—sufficient to cover communications networks between cities. But increasing their range, eventually to the global scale, is a formidable challenge.

Nov 7, 2022

Quantum Cryptography Is Unbreakable. So Is Human Ingenuity

Posted by in categories: business, computing, encryption, government, internet, mathematics, privacy, quantum physics, security

face_with_colon_three circa 2016.


Two basic types of encryption schemes are used on the internet today. One, known as symmetric-key cryptography, follows the same pattern that people have been using to send secret messages for thousands of years. If Alice wants to send Bob a secret message, they start by getting together somewhere they can’t be overheard and agree on a secret key; later, when they are separated, they can use this key to send messages that Eve the eavesdropper can’t understand even if she overhears them. This is the sort of encryption used when you set up an online account with your neighborhood bank; you and your bank already know private information about each other, and use that information to set up a secret password to protect your messages.

The second scheme is called public-key cryptography, and it was invented only in the 1970s. As the name suggests, these are systems where Alice and Bob agree on their key, or part of it, by exchanging only public information. This is incredibly useful in modern electronic commerce: if you want to send your credit card number safely over the internet to Amazon, for instance, you don’t want to have to drive to their headquarters to have a secret meeting first. Public-key systems rely on the fact that some mathematical processes seem to be easy to do, but difficult to undo. For example, for Alice to take two large whole numbers and multiply them is relatively easy; for Eve to take the result and recover the original numbers seems much harder.

Continue reading “Quantum Cryptography Is Unbreakable. So Is Human Ingenuity” »

Nov 7, 2022

A startup building software to encrypt messaging tools such as Slack just raised $11 million from Molten Ventures. Check out the 17-slide pitch deck Worldr used to secure the round

Posted by in categories: encryption, security

The company gives its customers full control over their data and claims to increase security, with a focus on compliance and auditing.

Oct 31, 2022

New Entanglement Results Hint at Better Quantum Codes

Posted by in categories: encryption, quantum physics

A team of physicists has entangled three photons over a considerable distance, which could lead to more powerful quantum cryptography.

Oct 12, 2022

Emulating impossible ‘unipolar’ laser pulses paves the way for processing quantum information

Posted by in categories: cybercrime/malcode, encryption, quantum physics

A laser pulse that sidesteps the inherent symmetry of light waves could manipulate quantum information, potentially bringing us closer to room temperature quantum computing.

The study, led by researchers at the University of Regensburg and the University of Michigan, could also accelerate conventional computing.

Quantum computing has the potential to accelerate solutions to problems that need to explore many variables at the same time, including drug discovery, weather prediction and encryption for cybersecurity. Conventional computer bits encode either a 1 or 0, but quantum bits, or qubits, can encode both at the same time. This essentially enables quantum computers to work through multiple scenarios simultaneously, rather than exploring them one after the other. However, these mixed states don’t last long, so the must be faster than electronic circuits can muster.

Oct 7, 2022

Nobel Prize: Quantum Entanglement Unveiled

Posted by in categories: computing, encryption, quantum physics

The 2022 Nobel Prize in Physics honors research on the foundations of quantum mechanics, which opened up the quantum information frontier.

7 October 2022: We have replaced our initial one-paragraph announcement with a full-length Focus story.

The Nobel Prize in Physics this year recognizes efforts to take quantum weirdness out of philosophy discussions and to place it on experimental display for all to see. The award is shared by Alain Aspect, John Clauser, and Anton Zeilinger, all of whom showed a mastery of entanglement—a quantum relationship between two particles that can exist over long distances. Using entangled photons, Clauser and Aspect performed some of the first “Bell tests,” which confirmed quantum mechanics predictions while putting to bed certain alternative theories based on classical physics. Zeilinger used some of those Bell-test techniques to demonstrate entanglement control methods that can be applied to quantum computing, quantum cryptography, and other quantum information technologies.

Oct 5, 2022

Avast releases free decryptor for Hades ransomware variants

Posted by in categories: cybercrime/malcode, encryption

Avast has released a decryptor for variants of the Hades ransomware known as ‘MafiaWare666’, ‘Jcrypt’, ‘RIP Lmao’, and ‘BrutusptCrypt,’ allowing victims to recover their files for free.

The security company says it discovered a flaw in the encryption scheme of the Hades strain, allowing some of the variants to be unlocked. However, this may not apply to newer or unknown samples that use a different encryption system.

Utilizing Avast’s tool, victims of the supported ransomware variants can decrypt and access their files again without paying a ransom to the attackers, which ranges between $50 and $300. However, ransom demands reached tens of thousands in some cases.

Oct 5, 2022

How Quantum Physics Leads to Decrypting Common Algorithms

Posted by in categories: computing, encryption, information science, mathematics, quantum physics, weapons

The rise of quantum computing and its implications for current encryption standards are well known. But why exactly should quantum computers be especially adept at breaking encryption? The answer is a nifty bit of mathematical juggling called Shor’s algorithm. The question that still leaves is: What is it that this algorithm does that causes quantum computers to be so much better at cracking encryption? In this video, YouTuber minutephysics explains it in his traditional whiteboard cartoon style.

“Quantum computation has the potential to make it super, super easy to access encrypted data — like having a lightsaber you can use to cut through any lock or barrier, no matter how strong,” minutephysics says. “Shor’s algorithm is that lightsaber.”

Continue reading “How Quantum Physics Leads to Decrypting Common Algorithms” »

Sep 27, 2022

Metasurface engineered to create three different images depending on illumination

Posted by in categories: encryption, nanotechnology

Researchers have developed a metasurface device that can display three types of images depending on the illumination light. The three-channel device could be used as an anticounterfeiting measure or offer a new way to securely deliver encrypted information.

“Metasurfaces are artificial materials with tiny nanostructures that can be used to manipulate light,” said research team member Qi Dai from Wuhan University in China. “In this work, we exploited both the size and orientation of the nanostructures to design a metasurface with three working modes.”

The researchers describe the new device in Optics Express. They also showed that depending on the light used, the metasurface would generate a holographic image or a structural-color nanoprinting image with or without polarization-dependent watermarks.

Sep 24, 2022

New Invention Triggers One of Quantum Mechanics’ Strangest and Most Useful Phenomena

Posted by in categories: computing, encryption, nanotechnology, quantum physics

By helping scientists control a strange but useful phenomenon of quantum mechanics, an ultrathin invention could make future computing, sensing, and encryption technologies remarkably smaller and more powerful. The device is described in new research that was recently published in the journal Science.

This device could replace a roomful of equipment to link photons in a bizarre quantum effect called entanglement, according to scientists at Sandia National Laboratories and the Max Planck Institute for the Science of Light. It is a kind of nano-engineered material called a metasurface and paves the way for entangling photons in complex ways that have not been possible with compact technologies.

When photons are said to be entangled, it means they are linked in such a way that actions on one affect the other, no matter where or how far apart the photons are in the universe. It is a spooky effect of quantum mechanics, the laws of physics that govern particles and other very tiny things.

Page 16 of 58First1314151617181920Last