Toggle light / dark theme

Husker researchers Seunghee Kim, Karrie Weber and Hyun-Seob Song are studying the Midcontinent Rift — which runs from beneath Lake Superior through parts of Minnesota, Michigan, Wisconsin, Iowa, Nebraska and Kansas — to determine how best to access a potential store of natural hydrogen that could yield vast amounts of clean energy.

Launching in February 2025, NASAs PUNCH mission will study the Sun’s corona and solar wind with four satellites.

NASA and SpaceX plan to launch NASA’s PUNCH mission (Polarimeter to Unify the Corona and Heliosphere) in late February 2025 aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California.

The PUNCH mission consists of four small satellites designed to enter low Earth orbit and capture 3D, global views of the Sun’s corona. By studying how mass and energy in the corona become the solar wind, scientists hope to gain new insights into solar activity and its effects on space weather.

A group of researchers have carried out a techno-economic analysis of three revamping strategies for an operating photovoltaic power plant in southeast Spain. They found the highest production value by installed power is obtained when both the modules and inverters are replaced.

Grenergy, a Spanish independent power producer focused on the development of PV, wind, and energy storage projects, has announced the arrival of 105 BYD batteries at the port of Iquique, Chile.

Grenergy said that the Chipol Guangan cargo ship, arriving after a 42-day journey from Dachan, China, has delivered 1,050 MC Cube ESS battery modules with a total storage capacity of 600 MWh. The modules will support the Oasis de Atacama solar-plus-storage project in Chile.

Photonic space-time crystals enhance light interaction and amplification, offering new applications in optical information processing.

Photonic space-time crystals are advanced materials designed to enhance the performance and efficiency of technologies like wireless communication and lasers. These crystals have a unique structure that is periodically arranged in three spatial dimensions and also changes over time, allowing precise control of light’s behavior. Researchers from the Karlsruhe Institute of Technology (KIT), in collaboration with Aalto University, the University of Eastern Finland, and Harbin Engineering University in China, have demonstrated how these four-dimensional materials can be applied in real-world technologies. Their findings were published in Nature Photonics.

Photonic Time Crystals

MIT engineers have discovered that the mobula ray, a type of filter-feeding aquatic ray, utilizes a unique mechanism to feed and breathe simultaneously, which could revolutionize industrial water filters.

By studying the geometry of the ray’s mouth and gill structures, they developed a blueprint for more efficient filtration systems, balancing permeability with selectivity to enhance performance without increasing energy consumption.

Filter Feeding and Engineering Insights.

A team of engineers is reimagining one of the essential processes in modern manufacturing. Their goal? To transform how a chemical called acrylonitrile (ACN) is made—not by building world-scale manufacturing sites, but by using smaller-scale, modular reactors that can work if they let the catalyst, in a sense, “breathe.”

Their article, titled “Propene Ammoxidation over an Industrial Bismuth Molybdate-Based Catalyst Using Forced Dynamic Operation,” is published in Applied Catalysis A: General.

ACN is everywhere, from carbon fibers in sports equipment to acrylics in car parts and textiles. Traditionally, producing it requires a continuous, energy-intensive process. But now, researchers at the University of Virginia and the University of Houston have shown that by pausing to “inhale” fresh oxygen, a chemical can produce ACN more efficiently. This discovery could open the door to smaller, versatile production facilities that adapt to fluctuating needs.