Toggle light / dark theme

Light-to-electricity nanodevice found in cyanobacteria reveals how early life utilized sunlight to make oxygen

An international team of scientists have unlocked a key piece of Earth’s evolutionary puzzle by decoding the structure of a light-harvesting “nanodevice” in one of the planet’s most ancient lineages of cyanobacteria.

The discovery, published in Proceedings of the National Academy of Sciences, provides an unprecedented glimpse into how harnessed sunlight to produce oxygen—a process that transformed our planet forever.

The team, including Dr. Tanai Cardona from Queen Mary University of London, focused on Photosystem I (PSI), a molecular complex that converts light into , purified from Anthocerotibacter panamensis —a recently discovered species representing a lineage that diverged from all other cyanobacteria roughly 3 billion years ago.

Harnessing gradient doping boosts end-pumped Nd: YAG laser performance

In recent research published in Optics & Laser Technology and Infrared Physics & Technology, a research team led by Prof. Cheng Tingqing at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has introduced a novel low-thermal-effect gradient-doped crystal to tame thermal effects and improve the brightness of high-power end-pumped Nd: YAG lasers.

Traditional end-pumped solid-state lasers rely on uniformly doped crystals, which develop significant temperature gradients and thermal stresses under high pump power due to the axial absorption decay of pump power. These effects not only limit maximum pump power, but also degrade beam quality and conversion efficiency.

In this study, the researchers devised a numerical model for crystals whose neodymium concentration gradually increases along the rod, providing a theoretical basis for optimizing the concentration distribution and growth of novel gradient-doped crystals.

High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf

Most sunlight received by photovoltaic panels is converted to and lost as heat, increasing their temperature and deteriorating their performance. Here, the authors propose a multi-energy generation photovoltaic leaf concept with biomimetic transpiration and demonstrate much improved performance.

Scientists achieve breakthrough solution to decades-long issue with virtually limitless energy device: ‘Charting a path’

TAE’s “Norm” development, for instance, may “[chart] a path for streamlined devices that directly addresses the commercially critical metrics of cost, efficiency, and reliability,” theorized Michl Binderbauer, CEO of TAE Technologies.

“This milestone significantly accelerates TAE’s path to commercial hydrogen-boron fusion that will deliver a safe, clean, and virtually limitless energy source for generations to come,” Binderbauer added.

“Norm” is set to precede TAE’s next reactor prototype, “Copernicus,” which TAE engineers anticipate will demonstrate fusion as a viable energy source before 2030.

Smart charging, real cash: Ava wants to pay EV drivers to plug in

Ava Community Energy just rolled out a new program in California that pays EV and plug-in hybrid drivers for charging their cars when electricity on the grid is cleaner and cheaper.

The new Ava SmartHome Charging program, launched in partnership with home energy analytics platform Optiwatt, offers up to $100 in incentives in the first year. And because the program helps shift home charging to lower-cost hours, Ava says drivers could save around $140 a year on their energy bills.

EV and PHEV owners who are Ava customers can download the Optiwatt app for free, connect their vehicle, and let the app handle the rest. The app uses an algorithm to automatically schedule charging when demand is low and more renewable energy is available, typically overnight or during off-peak hours.

Sustainable method produces high-purity material for use in green hydrogen production

A group of researchers affiliated with the Center for Innovation in New Energies (CINE) has developed a method for purifying materials that is simple, economical and has a low environmental impact. The scientists have managed to improve the efficiency of a film that can be used in some green hydrogen production processes.

Known as mullite-type bismuth ferrite (Bi₂Fe₄O₉), the material has been used as a photoelectrocatalyst in the production of hydrogen by photoelectron oxidation, a process in which molecules of water or biomass derivatives are oxidized using sunlight as an energy source. The role of bismuth ferrite films in this process is to absorb light and drive the electrochemical reactions that “separate” the hydrogen from the original molecules (water, glycerol, ethanol, etc.).

However, the performance of these photoelectrocatalysts has been limited in the production of hydrogen due, among other factors, to the presence of unwanted compounds in the material itself, known as secondary phases. Now, research carried out by CINE members in the laboratories of the State University of Campinas (UNICAMP) in Brazil has brought a solution to the problem: a purification method that has managed to eliminate these unwanted compounds.

UK lab promises air-con revolution without polluting gases

The soft, waxy “solid refrigerant” being investigated in a UK laboratory may not look very exciting, but its unusual properties promise an air-conditioning revolution that could eliminate the need for greenhouse gases.

The substance’s temperature can vary by more than 50 degrees Celsius (90 degrees Fahrenheit) under pressure, and unlike the gases currently used in appliances solid refrigerants, it does not leak.

“They don’t contribute to , but also they are potentially more energy efficient,” Xavier Moya, a professor of materials physics at the University of Cambridge, told AFP.

/* */