Toggle light / dark theme

Circa 2020 o.o


The NASA Perseverance Rover has a device aboard called MOXIE that will convert the air available on Mars into oxygen. The device is a test, and if the technology was used on a larger scale could produce oxygen for humans to breathe on the Red Planet and could be used for rocket fuel. NASA knows that one of the most challenging parts of putting people on Mars will be getting them off the planet and back to Earth.

Two get a crew for off Mars would require 55000 pounds of oxygen to produce thrust from 15000 pounds rocket fuel. Rather than send all of the oxygen needed from Earth to Mars, scientists want to enable the astronauts to create the rocket fuel on Mars. MOXIE is a first-generation oxygen generator meant to test technology that could create the required oxygen.

MOXIE stands for Mars Oxygen In-Situ Resource Utilization Experiment and is an experiment that is entirely separate from the Perseverance’s primary science mission. One of the main missions of Perseverance is to recover rock samples that can be returned to earth that might have signs of ancient microbial life. MOXIE is focused on the engineering required for future human exploration efforts.

A team of researchers at Technion—Israel Institute of Technology has developed a new technique for conducting real-time evanescent wave imaging using standard optical technology. In their paper published in the journal Nature Photonics, the group describes their new technology and ways they believe it can be used in photonic device characterization and other applications.

Evanescent waves are oscillating electric or magnetic fields that do not propagate—their energy remains in the vicinity of the source that created them due to a quickly decaying amplitude. They play an important role in acoustic and optical applications. Guided waves, on the other hand, have certain frequencies and energy that can travel very quickly along a designated path—they also leave a trace of their passing—an evanescent wave that decays so quickly that it is very difficult to see it with standard technology. Past attempts to image them have run into trouble, such as perturbation in the field under study, long acquisition times or the need for complex and expensive equipment. In this new effort, the researchers have developed a technique for measuring and imaging that overcomes all these problems.

The work involved studying evanescent waves of light by mixing them with a . Doing so resulted in the creation of a new frequency that could be both seen and studied. The method works, they note, because the laser changes the direction of the electric field. They found during experimentation that they could create using the laser. And further study showed that it was possible to both insert information into the evanescent waves and to take it out when desired. They also found that the shapes could be imaged using standard commercial cameras. The team calls the new technique nonlinear near-field and note that it does not require exotic equipment and can be done at very little cost.

The ‘engine’ is actually a nanotube, powered by an enzyme-triggered biocatalytic reaction using urea as fuel. The reaction creates an internal flow that extends out into the fluid, causing an open cavity to form. This results in thrust, propelling the nanotube along.

Samuel Sánchez was one of the lead researchers from the previous record holders where their nanotube jet engine measured 600nm across and weighed 1 femtogram (10^−15 kg).

Xing Ma and Samuel Sánchez recognise both Ana C. Hortelao (Spain) and Albert Miguel-López (Spain) contribution to the research as well as the support from their affiliated institutions:

Danny Key in his Wheel Horse Garden Tractor lined up against Freddie Ringlet (I think) in his Roper Garden Tractor, for what may be the first ever heads up tractor race!! Danny’s tractor is fitted with a Honda cbr1000 engine, out of a 1990’s bike. It has straight through pipes, and bell mouths on the carbs. The timing has also been advanced to enable it to run on VP race fuel. Danny said ‘it is a little down on compression, and he is just waiting on it going bang, before he can start on a rebuild’. The other tractor, I have no info on as yet. (any info appreciated)

Danny won both races with an 12.53 @ 107mph v 14.8 @ 90mph. and an 11.92 @ 108mph v 14.34 @ 92mph.

He has run down into the low 11’s before @ 114mph, but with cold track conditions and being down on power, this was not a bad run. Hope to see him out again next year, running on Renegade Race Fuel and sponsored by Jeff Ludgate.

Note: I have removed the earlier video, as I found this quicker run that I filmed.

Please like the videos, subscribe, check out my facebook page and contact me if you are looking for a video of your vehicle. I may just have one smile

https://www.facebook.com/VeeDubRacing.

Making Kazakhstan Green Again — Mr. Arman Kashkinbekov, Honorary CEO and Board Member, Association of Renewable Energy of Kazakhstan — Director, International Snow Leopard Foundation.


Mr. Arman Kashkinbekov, is the honorary CEO and board member, Association of Renewable Energy of Kazakhstan and Deputy Chairman of the Board, International Centre for Green Technologies and Investment Projects (Kazakhstan).

With a bachelor’s degree from Karaganda University, in International Economic Relations, and a master’s degree in economics from Vanderbilt University, Mr. Kashkinbekov also studied at the Norwegian Petroleum Directorate and the Kazakhstan-Japan Development Center.

Mr. Kashkinbekov has broad experience in the oil & gas and mining industries, including roles as senior manager at NC KazMunayGas, deputy country manager at ConocoPhillips, executive director at KazEnergy, general manager at Rolls-Royce Energy, and deputy CEO at ArcelorMittal Temirtau.

Mr. Kashkinbekov also worked as president of KazInvest, head of international affairs at the Sovereign Wealth Fund, Samruk-Kazyna, adviser to chairman of the board at NC KazAutoZhol, and director of the foreign Investor’s Council chaired by the President of Kazakhstan.

Total semiconductor shipments including shipments of ICs as well as optoelectronics, sensor/actuator and discrete (O-S-D) devices are forecast to rise 13% to a record high of 1.135 trillion units in 2021, according to IC Insights. It would mark the third time that semiconductor units have surpassed one trillion units in a calendar year — the first time being in 2018.

The 13% increase follows a 3% increase in 2020 as the COVID-19 pandemic was wreaking havoc across many segments of the economy, IC Insights indicated. From 1978, when 32.6 billion units were shipped, through 2021, the compound annual growth rate (CAGR) for semiconductor units is forecast to be 8.6%. The strong CAGR also demonstrates that new market drivers continue to emerge that fuel demand for more semiconductors.

Between 2004 and 2007, semiconductor shipments broke through the 400-, 500-, and 600-billion unit levels before the global financial meltdown led to a steep decline in semiconductor shipments in 2008 and 2009. Unit growth rebounded sharply in 2010 with a 25% increase and surpassed 700 billion devices that year. Another strong increase in 2017 (12% growth) lifted semiconductor unit shipments beyond the 900-billion level before the one-trillion mark was surpassed in 2018, IC Insights said.

Norway’s sovereign wealth fund has agreed to pay around 1.375 billion euros ($1.63 billion) for a 50% stake in one of the world’s biggest offshore wind farms, Orsted’s 752 megawatt (MW) Borssele 1 & 2 facility.

Managed by Norges Bank Investment Management, the fund — whose wealth stems from Norway’s vast North Sea oil and gas reserves — is the world’s largest and worth more than $1.3 trillion. In an announcement Wednesday, NBIM described the deal as its “first investment in renewable energy infrastructure.”

The transaction is set to complete in the second or third quarter of 2021. Under the terms of the deal, Orsted will retain its position as co-owner of the wind farm and handle operations and maintenance.

A new way to harvest power from 5G networks could make many of the batteries that power our devices a thing of the past, researchers say.


An ATHENA group member holds an inkjet-printed prototype of a mm-wave harvester. The researchers envision a future where IoT devices will be powered wirelessly over 5G networks. (Credit: Christopher Moore/Georgia Tech)

The researchers have developed a flexible Rotman lens-based rectifying antenna (rectenna) system capable, for the first time, of millimeter-wave harvesting in the 28-GHz band. The Rotman lens is key for beamforming networks and is frequently used in radar surveillance systems to see targets in multiple directions without physically moving the antenna system.

https://youtube.com/watch?v=OTx9M5L4V0Y&feature=share

On April 9, 2021 NASA demonstrated video footage on Mars Helicopter Ingenuity during rotor blades spinning test and HI-RES first image from Ingenuity. Launch day of Ingenuity Perseverance Mars Rover sent images of Ingenuity Helicopter’s rotor blades spin up within motor test. Ingenuity is going to fly on Mars on April 11–12. Rotor blades spinned up and are unlocked and helicopter is going to make high-rpm test. So next milestone is to spin up rotor blades full-speed for the first time on Mars (to the planned flight speed of ~2400 RPM) while still on the surface. Flight can’t happen too late in the Martian day either. A long flight late in the afternoon could deplete the battery without giving the Sun a chance to recharge it. You don’t want to go into that cold Martian night without a good bit of energy in the battery!

Credit: nasa.gov, NASA/JPL-Caltech, NASA/JPL-Caltech/ASU

Source for NASA’s Mars Helicopter Ingenuity page: https://mars.nasa.gov/technology/helicopter/

Source for Ingenuity fly update: https://mars.nasa.gov/technology/helicopter/status/289/when-…nuity-fly/

#mars #helicopter #perseverance