БЛОГ

Archive for the ‘energy’ category: Page 235

Aug 19, 2020

Hemp fibres ‘better than graphene’

Posted by in categories: energy, food, sustainability

Circa 2014


The waste fibres from hemp crops can be transformed into high-performance energy storage devices, scientists say.

They “cooked” cannabis bark into carbon nanosheets and built supercapacitors “on a par with or better than graphene” — the industry gold standard.

Continue reading “Hemp fibres ‘better than graphene’” »

Aug 17, 2020

The revolutionary boat powered by the ocean

Posted by in category: energy

The Philippines’ traditional three-hulled boat is being redesigned, to draw its power not from fossil fuels, but from the energy of the waves.

Aug 16, 2020

This Battery Could Let Whole Neighborhoods Go Off the Grid

Posted by in category: energy

Circa 2014


A Silicon Valley startup run by old-school technologists has invented an energy storage device that could take an entire neighborhood off the grid.

Aug 15, 2020

New catalyst efficiently turns carbon dioxide into useful fuels and chemicals

Posted by in categories: chemistry, energy, sustainability

As levels of atmospheric carbon dioxide continue to climb, scientists are looking for new ways of breaking down CO2 molecules to make useful carbon-based fuels, chemicals and other products. Now, a team of Brown University researchers has found a way to fine-tune a copper catalyst to produce complex hydrocarbons—known as C2-plus products—from CO2 with remarkable efficiency.

In a study published in Nature Communications, the researchers report a catalyst that can produce C2-plus compounds with up to 72% faradaic efficiency (a measure of how efficiently is used to convert carbon dioxide into chemical reaction products). That’s far better than the reported efficiencies of other catalysts for C2-plus reactions, the researchers say. And the preparation process can be scaled up to an industrial level fairly easily, which gives the new catalyst potential for use in large-scale CO2 recycling efforts.

“There had been reports in the literature of all kinds of different treatments for that could produce these C2-plus with a range of different efficiencies,” said Tayhas Palmore, the a professor of engineering at Brown who co-authored the paper with Ph.D. student Taehee Kim. “What Taehee did was a set of experiments to unravel what each of these treatment steps was actually doing to the catalyst in terms of reactivity, which pointed the way to optimizing a catalyst for these multi-carbon compounds.”

Aug 14, 2020

NASA’s Ingenuity Mars Helicopter Powered Up for the First Time in Interplanetary Space

Posted by in categories: energy, health, space

Headed to the Red Planet with the Perseverance rover, the pioneering helicopter is powered up for the first time in interplanetary space as part of a systems check.

NASAs Ingenuity Mars Helicopter received a checkout and recharge of its power system on Friday, August 7, one week into its near seven-month journey to Mars with the Perseverance rover. This marks the first time the helicopter has been powered up and its batteries have been charged in the space environment.

During the eight-hour operation, the performance of the rotorcraft’s six lithium-ion batteries was analyzed as the team brought their charge level up to 35%. The project has determined a low charge state is optimal for battery health during the cruise to Mars.

Aug 13, 2020

This shop just fitted Johnny Cash’s old Rolls-Royce with Tesla EV power

Posted by in category: energy

It wasn’t quite built one piece at a time, but there was a lot of fabrication required.

Aug 13, 2020

Energy storing bricks for stationary PEDOT supercapacitors

Posted by in categories: chemistry, energy

Fired brick is a universal building material, produced by thousand-year-old technology, that throughout history has seldom served any other purpose. Here, we develop a scalable, cost-effective and versatile chemical synthesis using a fired brick to control oxidative radical polymerization and deposition of a nanofibrillar coating of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). A fired brick’s open microstructure, mechanical robustness and ~8 wt% α-Fe2O3 content afford an ideal substrate for developing electrochemical PEDOT electrodes and stationary supercapacitors that readily stack into modules. Five-minute epoxy serves as a waterproof case enabling the operation of our supercapacitors while submerged underwater and a gel electrolyte extends cycling stability to 10,000 cycles with ~90% capacitance retention.

Aug 13, 2020

$212M Hydrogen Power Plant Project Complete

Posted by in categories: chemistry, energy, engineering

Energy solutions company Hanwha Energy has completed its $212m hydrogen fuel cell power plant, located at the Daesan Industrial Complex in Seosan, South Korea.

Built by Hanwha Engineering & Construction, the plant is thought to be the largest industrial hydrogen fuel cell power plant globally, and the first to only use hydrogen recycled from petrochemical manufacturing.

The recycled hydrogen is supplied by the Hanwha Total Petrochemical plant located within the same Daesan Industrial Complex. Hanwha Total Petrochemical pumps the recycled hydrogen into the new power plant via underground pipes and feeds it directly into the fuel cells.

Aug 13, 2020

A giant oil company is building the world’s largest plant that turns vegetable oil and grease into fuel — yet another sign of rising demand for cleaner gasoline

Posted by in category: energy

Phillips 66 is turning its large crude oil refinery in California into a plant that produces renewable fuel.

Aug 13, 2020

Upcycling plastic waste toward sustainable energy storage

Posted by in categories: energy, nanotechnology, sustainability, transportation

What if you could solve two of Earth’s biggest problems in one stroke? UC Riverside engineers have developed a way to recycle plastic waste, such as soda or water bottles, into a nanomaterial useful for energy storage.

Mihri and Cengiz Ozkan and their students have been working for years on creating improved materials from sustainable sources, such as glass bottles, beach sand, Silly Putty, and portabella mushrooms. Their latest success could reduce plastic pollution and hasten the transition to 100% clean .

“Thirty percent of the global car fleet is expected to be electric by 2040, and high cost of raw battery materials is a challenge,” said Mihri Ozkan, a professor of electrical engineering in UCR’s Marlan and Rosemary Bourns College of Engineering. “Using from landfill and upcycling could lower the total cost of batteries while making the battery production sustainable on top of eliminating plastic pollution worldwide.”