Toggle light / dark theme

Research shows how sulfate ions increase the lifespan, performance of aqueous batteries

Scientists at King Abdullah University of Science and Technology (KAUST) have uncovered a critical molecular cause keeping aqueous rechargeable batteries from becoming a safer, economical option for sustainable energy storage.

Their findings, published in Science Advances, reveal how water compromises battery life and performance and how the addition of affordable salts—such as zinc sulfate—mitigates this issue, even increasing the battery lifespan by more than ten times.

One of the key determinants of the lifespan of a battery—aqueous or otherwise—is the . Chemical reactions at the anode generate and store the battery’s energy. However, parasitic degrade the anode, compromising the battery lifespan.

Cost Effective way of Converting Hemp Waste into Ethanol Fuel

Breaking the cellulose and hemicellulose chain has for a long time been a very expensive process. Now with research and this new system it can be done in a rather simple and cost effective manner.

For long, the most expensive part of making cellulosic ethanol has been to be able to break this molecule chain, making it non-competitive with corn ethanol. With this new technology, cellulosic ethanol can compete with corn ethanol as cellulosic ethanol is more environmentally friendly alternative.

To learn more about the basics of cellulosic ethanol and starch ethanol, see the article linked below.


This is the latest and greatest innovation in the world of cellulosic ethanol production. It shows potential for significant cost savings and proving to be even more profitable than corn ethanol.

New Solar Tech Transforms Airborne CO₂ Into Usable Fuel, Turning Global Pollution Into a Powerful Clean Energy Source

IN A NUTSHELL 🌞 Cambridge researchers have developed a solar-powered device that converts atmospheric CO2 into valuable fuel. 🌿 This invention mimics photosynthesis, operating without an external power source, ideal for remote areas. 💡 The technology offers a sustainable alternative to fossil fuels, reducing reliance on non-renewable energy sources. 🔄 By addressing both energy production

New scheme mitigates self-discharging in quantum batteries

Quantum batteries (QBs) are energy storage devices that could serve as an alternative to classical batteries, potentially charging faster and enabling the extraction of more energy. In contrast with existing batteries, these batteries leverage effects rooted in quantum mechanics, such as entanglement and superposition.

Despite their promise, QBs have not yet reached optimal performances, partly because they are prone to decoherence simultaneously. This is a loss of coherence (i.e., the ability of quantum systems to exist in a superposition of multiple states), prompted by interactions between a system and its surrounding environment.

Decoherence causes QBs to self-discharge, or in other words, to spontaneously start releasing the energy they are storing. This self-discharging process has so far prevented the batteries’ practical application.

/* */