БЛОГ

Archive for the ‘energy’ category: Page 27

Jul 4, 2024

Hyundai and LG open first EV battery cell plant in Indonesia to power up affordable EVs

Posted by in category: energy

Hyundai opened the first EV battery cell plant in Indonesia with LG Energy Solution as it builds out its global supply chain. The plant will supply cells for over 150,000 competitively-priced Hyundai and Kia EVs, starting with the new Kona Electric.

In March 2021, Hyundai teamed up with LG to build a new EV battery cell plant near the capital of Indonesia.

Hyundai and LG invested $1.1 billion for a 50/50 stake in the factory. The partnership, “HLI Green Power,” will secure a “steady supply of EV batteries at a competitive price for upcoming BEVs,” according to Hyundai.

Jul 4, 2024

Tesla Energy posts record 9.4 GWh of battery storage deployed in Q2 2024

Posted by in categories: energy, sustainability

Tesla Energy is no longer a sleeping giant. During the second quarter of 2024, Tesla Energy was able to deploy 9.4 GWh of energy storage products. This represents the highest quarter deployment of energy storage products in Tesla’s history to date.

Tesla Energy was already a standout in the company’s Q1 2024 Update Letter. In the document, Tesla highlighted that Q1’s energy deployments were a new record at 4.1 GWh. As could be seen in Tesla’s Q2 2024 production and delivery report, Q1’s already impressive 4.1 GWh of energy storage deployments grew an astounding 132% quarter-over-quarter and 157% year-over-year.

$TSLA BREAKING: Tesla distributed 9.4 GWh of energy storage in the second quarter of 2024.

Jul 3, 2024

Researchers discover photo-induced charge-transfer complex between amine and imide

Posted by in categories: chemistry, energy

A research team led by Prof. Zhang Guoqing from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has discovered a highly reactive photo-induced charge-transfer complex (PCTC) between amine and imide. Their findings are published in the journal Chem.

Charge transfer between molecules, a critical process in both natural and synthetic systems, plays a fundamental role in photosynthesis, respiration, and various organic synthesis and energy conversion applications.

Despite extensive research, creating stable, light-responsive charge-transfer complexes in artificial systems remains challenging. The discovery of PCTCs addresses this challenge, offering new insights into complex photochemical processes.

Jul 3, 2024

Dual-laser approach could lower cost of high-resolution 3D printing

Posted by in categories: 3D printing, energy

Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications.

Two-photon polymerization is an advanced additive manufacturing technique that traditionally uses femtosecond lasers to polymerize materials in a precise, 3D manner. Although this process works well for making high-resolution microstructures, it isn’t widely used in manufacturing because femtosecond lasers are expensive and increase the cost of printing parts.

“We combined a relatively low-cost laser emitting with a emitting infrared pulses to reduce the power requirement of the femtosecond laser,” said research team leader Xianfan Xu from Purdue University. “In this way, with a given femtosecond laser power, the printing throughput can be increased, leading to a lower cost for printing individual parts.”

Jul 3, 2024

Compactification, Vacuum Energy and Quintessence

Posted by in categories: energy, space

We study the possibility that the vacuum energydensity of scalar and internal-space gauge fieldsarising from the process of dimensional reduction ofhigher dimensional gravity theories plays the role of quintessence. We show that, for themultidimensional Einstein-Yang-Mills system compactifiedon a R × S3 × Sdtopology, there are classically stable solutions suchthat the observed accelerated expansion of the Universe atpresent can be accounted for without upsetting structureformation scenarios or violating observational bounds onthe vacuum energy density.

Jul 3, 2024

New ink-based method offers best recipe yet for thermoelectric devices

Posted by in categories: energy, engineering, transportation

Power plants, factories, car engines—everything that consumes energy produces heat, much of which is wasted. Thermoelectric devices could capture this wasted heat and convert it into electricity, but their production has been prohibitively costly and complex.

Yanliang Zhang, the Advanced Materials and Manufacturing Collegiate Professor of Aerospace and Mechanical Engineering at the University of Notre Dame, and colleagues from a multi-institutional team have devised an ink-based manufacturing method making feasible the large-scale and cost-effective manufacturing of highly efficient thermoelectric devices.

Their finding were recently published in Energy & Environmental Science.

Jul 2, 2024

Microbial Platforms Have Energy Burdens Revealed by ATP Biosensor

Posted by in categories: bioengineering, energy

Bioengineers demonstrated that an ATP biosensor can be used to reveal microbial energetic dynamics and facilitate bioproduction.

Jul 1, 2024

CERN’s ATLAS experiment releases 65 TB of open data for research

Posted by in categories: education, energy, physics

The ATLAS Experiment at CERN has made two years’ worth of scientific data available to the public for research purposes. The data include recordings of proton–proton collisions from the Large Hadron Collider (LHC) at a collision energy of 13 TeV.

This is the first time that ATLAS has released data on this scale, and it marks a in terms of public access and utilization of LHC data.

Continue reading “CERN’s ATLAS experiment releases 65 TB of open data for research” »

Jun 29, 2024

MIT Physicists Forge a Five-Lane Quantum Superhighway for Electrons

Posted by in categories: energy, quantum physics

MIT physicists have developed a new form of graphene, creating a five-lane electron superhighway that allows for ultra-efficient electron movement without energy loss.

This breakthrough in rhombohedral pentalayer graphene could transform low-power electronic devices and operates via the quantum anomalous Hall effect at zero magnetic field.

MIT physicists and their collaborators have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more.

Jun 29, 2024

Semiconducting MAX phases show promise for high-temperature thermoelectric applications

Posted by in category: energy

New research identifies semiconducting MAX phases with low thermal conductivity and high thermoelectric efficiency, potentially advancing high-temperature energy harvesting technology.

Page 27 of 368First2425262728293031Last