Toggle light / dark theme

How order and disorder direct chemical reactivity

In nature, the behavior of systems—whether large or small—is always governed by a few fundamental principles. For instance, objects fall downward because it minimizes their energy. At the same time, order and disorder are key variables that also shape physical processes. Systems—especially our homes—tend to become increasingly disordered over time. Even at the microscopic level, systems tend to favor increased disorder, a phenomenon known as an increase in so-called entropy.

These two variables—energy and entropy—play an important role in . Processes occur automatically when energy can be reduced or entropy (disorder) increases.

Under standard conditions—such as in a glass of water—water autodissociation is hindered by both factors, making it a highly unlikely event. However, when strong electric fields are applied, the process can be dramatically accelerated.

Century-Old Mystery Solved: Scientists Measure a Fraction of an Electron, Unlocking the Secret to Catalysis

The discovery could significantly reduce the production costs of fuels, chemicals, and materials. A research team from the University of Minnesota Twin Cities College of Science and Engineering and the University of Houston’s Cullen College of Engineering has identified, and for the first time me

Researchers integrate waveguide physics into metasurfaces for advanced light control

Ultrathin structures that can bend, focus, or filter light, metasurfaces are reshaping how scientists think about optics. These engineered materials offer precise control over lights behavior, but many conventional designs are held back by inefficiencies. Typically, they rely on local resonances within individual nanostructures, which often leak energy or perform poorly at wide angles. These shortcomings limit their usefulness in areas like sensing, nonlinear optics, and quantum technologies.

A growing area of research looks instead to nonlocal metasurfaces, where interactions between many elements create collective optical effects. These collective behaviors can trap light more efficiently, producing sharper resonances and stronger interactions with matter. One of the most promising possibilities in this field is the development of photonic flatbands, where resonant behavior stays uniform across a wide range of viewing angles.

Another is creating chiral responses, which allow devices to distinguish between left-and right-handed circularly polarized light. Until now, however, achieving both flatband and chiral behavior with high efficiency on a single platform has remained a major challenge.

Physicist: After 33 billon years, universe ‘will end in a big crunch’

The universe is approaching the midpoint of its 33-billion-year lifespan, a Cornell physicist calculates with new data from dark-energy observatories. After expanding to its peak size about 11 billion years from now, it will begin to contract – snapping back like a rubber band to a single point at the end.

Henry Tye, the Horace White Professor of Physics Emeritus in the College of Arts and Sciences, reached this conclusion after adding new data to a model involving the “cosmological constant” – a factor introduced more than a century ago by Albert Einstein and used by cosmologists in recent years to predict the future of our universe.

“For the last 20 years, people believed that the cosmological constant is positive, and the universe will expand forever,” Tye said. “The new data seem to indicate that the cosmological constant is negative, and that the universe will end in a big crunch.”

Densifying argyrodite could prevent dendrite formation in all-solid-state batteries

All-solid-state batteries are emerging energy storage solutions in which flammable liquid electrolytes are substituted by solid materials that conduct lithium ions. In addition to being safer than lithium-ion batteries (LIBs) and other batteries based on liquid electrolytes, all-solid-state batteries could exhibit greater energy densities, longer lifespans and shorter charging times.

Despite their potential, most all– introduced to date do not perform as well as expected. One main reason for this is the formation of so-called lithium dendrites, needle-like metal structures that form when the lithium inside the batteries is unevenly deposited during charging.

These structures can pierce solid electrolytes, which can adversely impact the performance of batteries and potentially elicit dangerous reactions. Identifying strategies to prevent the formation of dendrites in solid electrolytes, while also achieving high energy densities and overall battery performance is thus of key importance to enable the commercialization and widespread deployment of all-solid-state batteries.

Silver-nanoring coating points to ‘self-regulating’ smart windows—without power or tinting

A new Danish research breakthrough could make buildings far more energy-efficient in the future. Researchers from Aarhus University’s Interdisciplinary Nanoscience Center (iNANO) have developed a light-responsive hybrid material based on so-called silver nanorings that automatically responds to solar intensity and regulates how much heat penetrates through windows.

The microscopic silver rings increasingly block near-infrared light as sunlight becomes stronger—without making the glass less transparent.

The technology functions without the use of power, sensors, or electronics—and could potentially be applied as a window coating in, for example, and modern residential buildings where large glass areas are common and heat radiation from the sun can be a challenge. This makes the solution particularly relevant at a time when for cooling exceeds the need for heating in large parts of the world.

Data from dark-energy observatories indicate universe may ‘end in a big crunch’ at 33 billion years old

The universe is approaching the midpoint of its 33-billion-year lifespan, a Cornell physicist calculates with new data from dark-energy observatories. After expanding to its peak size about 11 billion years from now, it will begin to contract—snapping back like a rubber band to a single point at the end.

Palladium filters could enable cheaper, more efficient generation of hydrogen fuel

Palladium is one of the keys to jump-starting a hydrogen-based energy economy. The silvery metal is a natural gatekeeper against every gas except hydrogen, which it readily lets through. For its exceptional selectivity, palladium is considered one of the most effective materials at filtering gas mixtures to produce pure hydrogen.

Today, palladium-based membranes are used at commercial scale to provide pure for semiconductor manufacturing, food processing, and fertilizer production, among other applications in which the membranes operate at modest temperatures. If palladium membranes get much hotter than around 800 Kelvin, they can break down.

Now, MIT engineers have developed a new palladium that remains resilient at much higher temperatures. Rather than being made as a continuous film, as most membranes are, the new design is made from palladium that is deposited as “plugs” into the pores of an underlying supporting material. At high temperatures, the snug-fitting plugs remain stable and continue separating out hydrogen, rather than degrading as a surface film would.

Entangled states enhance energy transfer in models of molecular systems

A study from Rice University, published in PRX Quantum, has found that energy transfers more quickly between molecular sites when it starts in an entangled, delocalized quantum state instead of from a single site. The discovery could lead to the development of more efficient light-harvesting materials that enhance the conversion of energy from light into other forms of energy.

Many , including photosynthesis, depend on rapid and efficient energy transfer following absorption. Understanding how quantum mechanical effects like entanglement influence these processes at room temperature could significantly change our approach to creating artificial systems that mimic nature’s efficiency.

“Delocalizing the initial excitation across multiple sites accelerates the transfer in ways that starting from a single site cannot achieve,” said Guido Pagano, the study’s corresponding author and assistant professor of physics and astronomy.

/* */