Toggle light / dark theme

Energy researchers discover fraction of an electron that drives catalysis

A team of researchers from the University of Minnesota Twin Cities College of Science and Engineering and the University of Houston’s Cullen College of Engineering has discovered and measured the fraction of an electron that makes catalytic manufacturing possible.

This discovery, published in the journal ACS Central Science, explains the utility of such as gold, silver and platinum for this manufacturing, and provides insight for designing new breakthrough catalytic materials.

Industrial catalysts—substances that reduce the amount of energy required for a given chemical reaction—allow producers to increase the yield, speed or efficiency of a specific reaction in pursuit of other materials. Such catalysts are used in processes related to pharmaceutical and battery production as well as petrochemical efforts such as the refining of crude oil, allowing supply to keep pace with demand in ways it otherwise could not.

TSMC reduces peak power consumption of EUV tools by 44% — company to save 190 million kilowatt-hours of electricity by 2030

TSMC is also exploring the possibility of applying similar dynamic energy control mechanisms to other lithography equipment, including DUV scanners, as well as additional modules outside the lithography sector.

While TSMC did not reveal what, exactly, its EUV Dynamic Energy Saving Program involves, that it is applicable to DUV systems and other machinery means that it does not exploit EUV-specific peculiarities. For example, the program could implement adaptive power scaling based on real-time operational status. If wafers are not queued for immediate processing, the EUV tool could intelligently pause or shift to a low-power state rather than continuously consume full power. Such an approach would require real-time data exchange across the cleanroom as well as optimizations on process/production flow levels (though, we are speculating).

TSMC has been increasing the power efficiency of its EUV fab tools — which are notorious for their power consumption — for years, now. In mid-2024, the company announced that it had though without disclosing what exactly had been done…

Energy-Based Transformers (EBTs) Use Gradient Descent To Gradually Predict the Next Token

A new type of transformer can check its work. Instead of guessing the next output token in one shot like a typical transformer, it starts with a rough version of the token and improves it step by step.

What’s new: Alexi Gladstone and colleagues at University of Virginia, University of Illinois Urbana-Champaign, Amazon, Stanford, and Harvard proposed the Energy-Based Transformer (EBT). Early experiments show that it scales more efficiently than transformers at relatively small sizes.

Energy-based model basics: For a given input context paired with a candidate response (for example, a prompt and potential next token), an energy-based model produces a number called “energy” that represents how likely the potential next token would follow the prompt. During training, the model learns to assign low energy if a context/potential-response pair is very likely and high energy if it’s not.

Energy-efficient catalyst converts water pollutants into useful ammonia

When the current method for producing something is estimated to consume a staggering 1–2% of the annual global energy supply, it means we need to make a change. The Haber-Bosch process produces ample amounts of ammonia (NH3)—a valuable chemical compound that has a wide array of uses in fields such as agriculture, technology, and pharmaceuticals—while consuming a lot of energy.

A research team at Tohoku University has made a significant contribution to an alternate method for converting harmful nitrate pollutants in water into ammonia, addressing both environmental and energy challenges.

Their findings are published in Advanced Functional Materials.

How diamond fails under extreme electrical fields

A research team from the University of Chinese Academy of Sciences has revealed the failure mechanism of diamond under extreme electrical fields through in situ experiments and molecular dynamics simulations. The study, published in Cell Reports Physical Science, provides critical insights for the design of robust diamond devices.

Diamond is known for its exceptional physical properties, including ultra-high breakdown field strength and , making it a promising material for and high-power electronics. However, its failure process under extreme electrical fields has remained poorly understood before now.

Led by Profs. Yan Qingbo and Chen Guangchao, the researchers used an in situ transmission electron microscopy (TEM) method to observe the breakdown process in real time. They found that diamond failure begins preferentially along the (111) crystal plane due to stress-induced lattice distortion and subsequent amorphization, rather than transforming into graphite.

Mars Perseverance rover data suggests presence of past microbial life

A new study co-authored by Texas A&M University geologist Dr. Michael Tice has revealed potential chemical signatures of ancient Martian microbial life in rocks examined by NASA’s Perseverance rover.

The findings, published by a large international team of scientists, focus on a region of Jezero Crater known as the Bright Angel formation—a name chosen from locations in Grand Canyon National Park because of the light-colored Martian rocks. This area in Mars’s Neretva Vallis channel contains fine-grained mudstones rich in oxidized iron (rust), phosphorus, sulfur and—most notably—organic carbon. Although organic carbon, potentially from non-living sources like meteorites, has been found on Mars before, this combination of materials could have been a rich source of energy for early microorganisms.

“When the rover entered Bright Angel and started measuring the compositions of the local rocks, the team was immediately struck by how different they were from what we had seen before,” said Tice, a geobiologist and astrobiologist in the Department of Geology and Geophysics.

/* */