Archive for the ‘energy’ category: Page 8

Dec 25, 2022

New rusty batteries could provide up to 100 hours of storage

Posted by in categories: energy, materials


The firm claims the innovation, known as the “iron-air battery,” could help decarbonize the nation’s power sector more cheaply than lithium-ion storage systems while using only domestic readily available materials.

Dec 25, 2022

The Polar Vortex starts to intensify, but a crucial stratospheric warming wave is now forecast to develop as we head into the New Year

Posted by in category: energy

The Polar Vortex is starting to power up and will drive a weather pattern change in the coming days, creating warm conditions over the United States and Europe. But its power-up will be quickly followed by a disruption event. A strong stratospheric warming wave is forecast to emerge, putting a question mark on the weather patterns for the rest of the Winter season.

Weather and the stratospheric Polar Vortex are strongly connected, especially in Winter. So it matters greatly in what shape or form the Polar Vortex is as we go through the season.

We will look at the important role of the Polar Vortex during the Winter season and how it played into the recent cold outbreaks. But more importantly, we will look closely at the latest forecasts and why the Polar Vortex might be the deciding factor for the weather patterns for the rest of the Winter season.

Continue reading “The Polar Vortex starts to intensify, but a crucial stratospheric warming wave is now forecast to develop as we head into the New Year” »

Dec 23, 2022

Coal consumption hits record high

Posted by in category: energy

The world continues to burn coal in greater quantities than ever. But a plateau in this — the most polluting of fossil fuels — could soon be reached.


Dec 23, 2022

Wind farms on Mars could power future astronaut bases

Posted by in categories: energy, space

Even though winds on Mars are weak, they could be sufficient to provide power.

Nature Publishing:


Dec 22, 2022

Ultra-light electric motor to feed Australia’s first home-grown rocket

Posted by in categories: energy, space

Equipmake says it’s got the lightest and most power-dense electric motor on the market, and if there’s one place where weight is critical, it’s on a launch pad. The company has developed an ultra-lightweight motor for Australia’s first rocket launch.

Queensland-based Gilmour Space Technologies is on the home stretch making preparations for the launch of its three-stage Eris orbital launch vehicle next April. It’ll be the first orbital launch attempt of an Australian designed and built rocket, and the company hopes it’ll represent the beginning of a new space launch industry Down Under.

Continue reading “Ultra-light electric motor to feed Australia’s first home-grown rocket” »

Dec 22, 2022

Celebrating Energy Central’s Top Voices in the Community for 2022 — Energy & Sustainability Network

Posted by in categories: energy, sustainability

As our Energy Central Community thrives and grows with each passing year, it’s clear to us that we have something special here. This community of power industry professionals who so eagerly and openly share their insights, their lessons learned, and their questions to allow for constant collaboration is unparalleled anywhere else in our sector.

The most critical part of this successful undertaking, though, is of course the people behind it all. The voices in our Community who are driving those conversations and keeping readers and peers coming back again and again. To once again celebrate the importance of our community members in making Energy Central the powerhouse that it is, we’re ending the year by honoring the members on Energy Central who went above and beyond—frequently sharing news and content, reliably starting conversations across the site, and providing some of the most genuinely high-value contributions throughout 2022.

All week, we’ll be publishing articles highlighting the Top Voice of 2022 for each of our 6 Networks. As part of this tradition, some of those community members recognized were kind enough to answer a few questions to highlight what they found valuable in the sector in 2022, their predictions for 2023, and some personal insights to get to know the men and women behind it all.

Continue reading “Celebrating Energy Central’s Top Voices in the Community for 2022 — Energy & Sustainability Network” »

Dec 22, 2022

Resolving the Achilles’ Heel of Thermal Hall Conductivity Measurements

Posted by in categories: energy, quantum physics

For a long time, researchers assumed that phonons could not contribute to the thermal Hall effect because of their lack of charge and spin. New work challenges this assumption.

How heat flows in interacting quantum many-body systems is one of the most interesting open problems in condensed-matter physics. Understanding thermal transport is particularly challenging in systems where charge-carrier contributions to energy transport are strongly suppressed, such as in insulators and superconductors. In such systems, heat transport cannot therefore be understood in terms of electronic carriers alone. In insulators, acoustic phonons are among the main energy carriers in an insulator. However, determining how and to what extent phonons contribute to heat transport in a material is the Achilles’ heel of interpreting thermal conductivity measurements. In particular, whether or not phonons can contribute to the thermal Hall effect—in which a temperature gradient in one direction produces heat flow in a perpendicular direction—remains an open question.

Dec 21, 2022

NASA Retires InSight Mars Lander Mission After Years of Science

Posted by in categories: energy, science, space, sustainability

The mission has concluded that the solar-powered lander has run out of energy after more than four years on the Red Planet.

Dec 19, 2022

Bubbles Have an Unexpected Chill

Posted by in categories: energy, entertainment

Bubbles are ubiquitous, existing in everything from the foam on a beer to party toys for children. Despite this pervasiveness, there are open questions on the behavior of bubbles, such as why some bubbles are more resistant to bursting than others. Now Francois Boulogne and colleagues from the University of Paris-Saclay have taken a step toward answering that question by measuring the temperature of the film surrounding a soap bubble, finding that it can be significantly lower than that of its local environment [1]. The team says that the result could help industrial manufacturers of bubbles better control the stability of their products.

On a sunny day, our bodies cool down by releasing energy into the environment through the evaporation of sweat. Soap films also release energy by losing liquid via evaporation. Researchers studying bubbles have tracked the evaporation of a soap film’s liquid content under different conditions. But those experiments all assumed that the film’s temperature matched that of the environment, an assumption the results of Boulogne and his colleagues challenge.

In their experiments Boulogne and colleagues created a soap bubble from a mixture made of dishwashing liquid, water, and glycerol. They then measured the soap film’s temperature under a variety of environmental conditions. They found that the film could be up to 8 °C colder than the surrounding air. They also found that glycerol content of the soap film impacted this temperature difference, with films containing more glycerol having higher temperatures. Boulogne says that such a large temperature difference could impact bubble stability. But, he adds, further experiments are needed to corroborate that idea.

Dec 19, 2022

A diamond-based quantum amplifier

Posted by in categories: chemistry, energy, engineering, quantum physics

In physics, weak microwave signals can be amplified with minimal added noise. For instance, artificial quantum systems based on superconducting circuits can amplify and detect single microwave patterns, although at millikelvin temperatures. Researchers can use natural quantum systems for low-noise microwave amplification via stimulated emission effects; however, they generate a higher noise at functionalities greater than 1 Kelvin.

In this new work, published in the journal Science Advances, Alexander Sherman and a team of scientists in chemistry at the Technical-Israel Institute of Technology, Haifa, used electron spins in diamond as a quantum microwave amplifier to function with quantum-limited internal noise above liquid nitrogen temperatures. The team reported details of the amplifier’s design, gain, bandwidth, saturation power and noise to facilitate hitherto unavailable applications in quantum science, engineering and physics.

Page 8 of 268First56789101112Last