БЛОГ

Archive for the ‘engineering’ category: Page 11

Oct 2, 2023

Simulations reveal the atomic-scale story of qubits

Posted by in categories: computing, engineering, particle physics, quantum physics

Researchers led by Giulia Galli at University of Chicago’s Pritzker School of Molecular Engineering report a computational study that predicts the conditions to create specific spin defects in silicon carbide. Their findings, published online in Nature Communications, represent an important step towards identifying fabrication parameters for spin defects useful for quantum technologies.

Electronic spin defects in semiconductors and insulators are rich platforms for , sensing, and communication applications. Defects are impurities and/or misplaced atoms in a solid and the electrons associated with these carry a spin. This quantum mechanical property can be used to provide a controllable qubit, the basic unit of operation in quantum technologies.

Yet the synthesis of these spin defects, typically achieved experimentally by implantation and annealing processes, is not yet well understood, and importantly, cannot yet be fully optimized. In —an attractive host material for spin qubits due to its industrial availability—different experiments have so far yielded different recommendations and outcomes for creating the desired spin defects.

Oct 2, 2023

Indian research team develops fully indigenous gallium nitride power switch

Posted by in categories: computing, engineering, military, mobile phones, space, sustainability

Researchers at the Indian Institute of Science (IISc) have developed a fully indigenous gallium nitride (GaN) power switch that can have potential applications in systems like power converters for electric vehicles and laptops, as well as in wireless communications. The entire process of building the switch—from material growth to device fabrication to packaging—was developed in-house at the Center for Nano Science and Engineering (CeNSE), IISc.

Due to their and efficiency, GaN transistors are poised to replace traditional silicon-based transistors as the in many , such as ultrafast chargers for , phones and laptops, as well as space and military applications such as radar.

“It is a very promising and disruptive technology,” says Digbijoy Nath, Associate Professor at CeNSE and corresponding author of the study published in Microelectronic Engineering. “But the material and devices are heavily import-restricted … We don’t have gallium nitride wafer production capability at commercial scale in India yet.” The know-how of manufacturing these devices is also a heavily-guarded secret with few studies published on the details of the processes involved, he adds.

Oct 2, 2023

A 17-year-old’s new synchronous reluctance motor outperforms traditional designs

Posted by in categories: education, engineering

Ibrahim Can/Interesting Engineering.

This summer, we reported that Sansone was awarded the first prize, and winnings of $75,000, at this year’s Regeneron International Science and Engineering Fair (ISEF), the world’s largest international high school STEM competition.

Oct 1, 2023

Optogenetics, Neuro-Engineering, and Artificial Memories in the Postmodern Age

Posted by in categories: bitcoin, cryptocurrencies, engineering, genetics

TWITTER
https://twitter.com/Transhumanian.

PATREON https://www.patreon.com/transhumania.

Continue reading “Optogenetics, Neuro-Engineering, and Artificial Memories in the Postmodern Age” »

Sep 30, 2023

Boston Dynamics Opens First European Office

Posted by in category: engineering

A new Boston Dynamics office in Frankfurt, Germany will provide sales, services, and field engineering support for European customers.

Sep 29, 2023

The human brain’s characteristic wrinkles help to drive how it works

Posted by in categories: engineering, internet, neuroscience, physics

The study’s authors compared the influence of two components of the brain’s physical structure: the outer folds of the cerebral cortex — the area where most higher-level brain activity occurs — and the connectome, the web of nerves that links distinct regions of the cerebral cortex. The team found that the shape of the outer surface was a better predictor of brainwave data than was the connectome, contrary to the paradigm that the connectome has the dominant role in driving brain activity. “We use concepts from physics and engineering to study how anatomy determines function,” says study co-author James Pang, a physicist at Monash University in Melbourne, Australia.


A model of the brain’s geometry better explains neuronal activity than a model based on the ‘connectome’.

Sep 28, 2023

A new kind of chip for quantum technology

Posted by in categories: cybercrime/malcode, engineering, information science, quantum physics, supercomputing

Today, we are living in the midst of a race to develop a quantum computer, one that could be used for practical applications. This device, built on the principles of quantum mechanics, holds the potential to perform computing tasks far beyond the capabilities of today’s fastest supercomputers. Quantum computers and other quantum-enabled technologies could foster significant advances in areas such as cybersecurity and molecular simulation, impacting and even revolutionizing fields such as online security, drug discovery and material fabrication.

An offshoot of this technological race is building what is known in scientific and engineering circles as a “”—a special type of quantum computer, constructed to solve one equation model for a specific purpose beyond the computing power of a standard computer. For example, in , a quantum could theoretically be built to help scientists simulate a specific, complex molecular interaction for closer study, deepening and speeding up drug development.

But just like building a practical, usable quantum computer, constructing a useful quantum simulator has proven to be a daunting challenge. The idea was first proposed by mathematician Yuri Manin in 1980. Since then, researchers have attempted to employ trapped ions, cold atoms and to build a quantum simulator capable of real-world applications, but to date, these methods are all still a work in progress.

Sep 27, 2023

Genetically modified bacteria break down plastics in saltwater

Posted by in categories: chemistry, engineering, genetics

A genetically engineered marine microorganism is shown to break down polyethylene terephthalate (PET) in saltwater. This plastic, used in everything from water bottles to clothing, is a significant contributor to microplastic pollution in oceans.

“This is exciting because we need to address plastic pollution in marine environments,” says Nathan Crook, corresponding author of a paper on the work and an assistant professor of chemical and biomolecular engineering at North Carolina State University.

Sep 27, 2023

Hugo de Garis — Innovating Beyond the Nanoscale, Femtometer Scale Technology

Posted by in categories: computing, engineering, military, nanotechnology, particle physics

Femtotech: Computing at the femtometer scale using quarks and gluons.
How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

I’ve been thinking on and off for two decades about the possibility of a femtotech. Now that nanotech is well established, and well funded, I feel that the time is right to start thinking about the possibility of a femtotech.

Continue reading “Hugo de Garis — Innovating Beyond the Nanoscale, Femtometer Scale Technology” »

Sep 26, 2023

Regeneration across complete spinal cord injuries reverses paralysis

Posted by in categories: biotech/medical, engineering, neuroscience

When the spinal cords of mice and humans are partially damaged, the initial paralysis is followed by the extensive, spontaneous recovery of motor function. However, after a complete spinal cord injury, this natural repair of the spinal cord doesn’t occur and there is no recovery. Meaningful recovery after severe injuries requires strategies that promote the regeneration of nerve fibers, but the requisite conditions for these strategies to successfully restore motor function have remained elusive.

“Five years ago, we demonstrated that can be regenerated across anatomically complete spinal cord injuries,” says Mark Anderson, a senior author of the study. “But we also realized this wasn’t enough to restore motor function, as the new fibers failed to connect to the right places on the other side of the lesion.” Anderson is the director of Central Nervous System Regeneration at. NeuroRestore and a scientist at the Wyss Center for Bio and Neuroengineering.

Continue reading “Regeneration across complete spinal cord injuries reverses paralysis” »

Page 11 of 228First89101112131415Last