БЛОГ

Archive for the ‘engineering’ category: Page 12

Aug 2, 2024

New Microscope Unlocks Hidden Atomic Architecture in Advanced Materials

Posted by in categories: engineering, particle physics

Researchers at the University of Sydney have developed a new microscopy method that uses atom probe tomography to observe atomic-scale changes in materials. This advancement enhances understanding of materials properties and could lead to stronger alloys for aerospace, more efficient semiconductors, and better magnets for motors.

Researchers at the University of Sydney have developed a new microscopy method using atom probe tomography to explore atomic-level changes in materials, promising significant advances in materials science and engineering.

A new microscopy technique enables researchers to observe minute changes in the atomic structure of crystalline materials, such as advanced steels used in shipbuilding and custom silicon for electronics. This method has the potential to enhance our understanding of the fundamental origins of material properties and behavior.

Jul 31, 2024

Bright prospects for engineering quantum light

Posted by in categories: computing, engineering, internet, quantum physics

Exploring the design of efficient quantum emitters using defects in wide-bandgap semiconductors, specifically silicon carbide (SiC) and diamond.

It highlights how these defects can be engineered to emit single photons, which are crucial for quantum technologies like secure communication and quantum…


Computers benefit greatly from being connected to the internet, so we might ask: What good is a quantum computer without a quantum internet?

Jul 29, 2024

Researchers trap atoms, forcing them to serve as photonic transistors

Posted by in categories: computing, engineering, nanotechnology, particle physics, quantum physics, tractor beam

Researchers at Purdue University have trapped alkali atoms (cesium) on an integrated photonic circuit, which behaves like a transistor for photons (the smallest energy unit of light) similar to electronic transistors. These trapped atoms demonstrate the potential to build a quantum network based on cold-atom integrated nanophotonic circuits. The team, led by Chen-Lung Hung, associate professor of physics and astronomy at the Purdue University College of Science, published their discovery in the American Physical Society’s Physical Review X (“Trapped Atoms and Superradiance on an Integrated Nanophotonic Microring Circuit”).

“We developed a technique to use lasers to cool and tightly trap atoms on an integrated nanophotonic circuit, where light propagates in a small photonic ‘wire’ or, more precisely, a waveguide that is more than 200 times thinner than a human hair,” explains Hung, who is also a member of the Purdue Quantum Science and Engineering Institute. “These atoms are ‘frozen’ to negative 459.67 degrees Fahrenheit or merely 0.00002 degrees above the absolute zero temperature and are essentially standing still. At this cold temperature, the atoms can be captured by a ‘tractor beam’ aimed at the photonic waveguide and are placed over it at a distance much shorter than the wavelength of light, around 300 nanometers or roughly the size of a virus. At this distance, the atoms can very efficiently interact with photons confined in the photonic waveguide. Using state-of-the-art nanofabrication instruments in the Birck Nanotechnology Center, we pattern the photonic waveguide in a circular shape at a diameter of around 30 microns (three times smaller than a human hair) to form a so-called microring resonator. Light would circulate within the microring resonator and interact with the trapped atoms.”

A key aspect function the team demonstrates in this research is that this atom-coupled microring resonator serves like a ‘transistor’ for photons. They can use these trapped atoms to gate the flow of light through the circuit. If the atoms are in the correct state, photons can transmit through the circuit. Photons are entirely blocked if the atoms are in another state. The stronger the atoms interact with the photons, the more efficient this gate is.

Jul 26, 2024

CRISPR engineering in organoids for gene repair and disease modelling

Posted by in categories: biotech/medical, engineering

Adult stem cell-derived organoids closely resemble their tissue of origin. This Review discusses recent developments in CRISPR-mediated genome engineering and its application using adult-stem-cell-derived organoids in the construction of isogenic disease models and for clinical gene repair.

Jul 25, 2024

Scientists plan climate engineering experiment in ocean off Cape Cod

Posted by in categories: chemistry, climatology, engineering, sustainability

Scientists from the Woods Hole Oceanographic Institution are seeking a federal permit to experiment in the waters off Cape Cod and see if tweaking the ocean’s chemistry could help slow climate change.

If the project moves forward, it will likely be the first ocean field test of this technology in the U.S. But the plan faces resistance from both environmentalists and the commercial fishing industry.

The scientists want to disperse 6,600 gallons of sodium hydroxide — a strong base — into the ocean about 10 miles south of Martha’s Vineyard. The process, called ocean alkalinity enhancement or OAE, should temporarily increase that patch of water’s ability to absorb carbon dioxide from the air. This first phase of the project, targeted for early fall, will test chemical changes to the seawater, diffusion of the chemical and effects on the ecosystem.

Jul 24, 2024

Compact atmospheric water harvesting device can produce water out of thin air

Posted by in categories: engineering, sustainability

Earth’s atmosphere holds an ocean of water, enough liquid to fill Utah’s Great Salt Lake 800 times. Extracting some of that moisture is seen as a potential way to provide clean drinking water to billions of people globally who face chronic shortages.

Existing technologies for atmospheric water harvesting (AWH) are saddled with numerous downsides associated with size, cost and efficiency. But new research from University of Utah engineering researchers has yielded insights that could improve efficiencies and bring the world one step closer to tapping the air as a culinary water source in arid places.

Continue reading “Compact atmospheric water harvesting device can produce water out of thin air” »

Jul 24, 2024

This Plant Is So Extreme Scientists Think It Could Thrive on Mars

Posted by in categories: engineering, environmental, space

Mosses are among Earth’s great terraformers, turning barren rock into fertile soils, and now a team of scientists is proposing these non-vascular plants could do the same on Mars.

Whether we should introduce life from Earth onto our red neighbor is another question – we don’t have a great track record with this on our own planet.

But if we decide it’s worth messing with soil on Mars to create a second home for us Earthlings, ecologist Xiaoshuang Li and colleagues at the Chinese Academy of Sciences have a candidate that they think should do just the trick.

Jul 23, 2024

Creating loops of liquid lithium for fusion temperature control

Posted by in categories: engineering, nuclear energy, particle physics

Fusion vessels have a Goldilocks problem: The plasma within needs to be hot enough to generate net power, but if it’s too hot, it can damage the vessel’s interior. Researchers at the Princeton Plasma Physics Laboratory (PPPL) are exploring ways to draw away excess heat, including several methods that use liquid metal.

One possibility, say researchers at the U.S. Department of Energy Lab, involves flowing liquid up and down a series of slats in tiles lining the bottom of the vessel. The liquid metal could also help to protect the components that face the against a bombardment of particles known as neutrons.

“The prevailing option for an economical commercial fusion reactor is a compact design,” said PPPL’s Egemen Kolemen, co-author of a 2022 paper on the research and an associate professor of mechanical and aerospace engineering and the Andlinger Center for Energy and the Environment. However, compactness makes handling the and neutron bombardment a bigger challenge.

Jul 23, 2024

New 3D reconstruction method aids analysis of property-defining defects

Posted by in categories: engineering, nanotechnology

An international research collaboration, including a group from Cornell Engineering, has applied a new X-ray-based reconstruction technique to observe, for the first time, topological defects in a nanoscale self-assembly-based cubic network structure of a polymer-metal composite material imaged over a relatively large sample volume.

Jul 23, 2024

Precise and versatile genome editing with click editors

Posted by in categories: biotech/medical, engineering

We developed click editors, comprising HUH endonucleases, DNA-dependent DNA polymerases and CRISPR–Cas9 nickases, which together enable programmable precision genome engineering from simple DNA templates.

Page 12 of 261First910111213141516Last