БЛОГ

Archive for the ‘engineering’ category: Page 134

Oct 1, 2020

Latest Flight Testing!

Posted by in categories: business, drones, engineering, evolution, military

Latest wing testing and the evolution of our aerodynamic control at speed with the #JetSuit never stops at Gravity. Here with the awesome Benjamin Kenobi chasing with his Inspire droneđŸ€˜

LINKS
SHOP: http://www.gravity.co/mobile-shop/
Instagram: https://www.instagram.com/takeongravity/?hl=en
Facebook: http://www.facebook.com/takeongravity/
LinkedIn: https://www.linkedin.com/in/richardbrowninggravity/
Web: http://www.gravity.co
TED 2017 talk: http://go.ted.com/richardbrowning

Continue reading “Latest Flight Testing!” »

Oct 1, 2020

E-beam atomic-scale 3D ‘sculpting’ could enable new quantum nanodevices

Posted by in categories: engineering, nanotechnology, quantum physics

Based on focused -induced processing (FEBID) techniques, the work could allow production of 2-D/3D complex nanostructures and functional nanodevices useful in quantum communications, sensing, and other applications. For oxygen-containing materials such as graphene oxide, etching can be done without introducing outside materials, using oxygen from the substrate.

“By timing and tuning the energy of the electron , we can activate interaction of the beam with oxygen in the graphene oxide to do etching, or interaction with hydrocarbons on the surface to create carbon deposition,” said Andrei Fedorov, professor and Rae S. and Frank H. Neely Chair in the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “With atomic-scale control, we can produce complicated patterns using direct write-remove processes. Quantum systems require precise control on an atomic scale, and this could enable a host of potential applications.”

Oct 1, 2020

U.S. DARPA tasks Gryphon with nuclear thermal propulsion system

Posted by in categories: engineering, military, space travel

Gryphon provides digital engineering, analytics, cyber and cloud solutions to U.S. security organizations. It was awarded a $14million DARPA task order to support the development and demonstration of an uranium-based Nuclear Thermal Propulsion (NTP) System.

The system is a part of the Demonstration Rocket for Agile Cislunar Operations (DRACO) program and will enable the U.S. military to operate spacecraft in cislunar space, Gryphon said. The cislunar space is the region outside the Earth’s atmosphere and just beyond the Moon’s orbit.

“A successfully demonstrated NTP system will provide a leap-ahead in space propulsion capability, allowing agile and rapid transit over vast distances as compared to present propulsion approaches,” said Gryphon’s Chief Engineer Dr. Tabitha Dodson.

Continue reading “U.S. DARPA tasks Gryphon with nuclear thermal propulsion system” »

Sep 24, 2020

Tesla is getting into the mining business, buys lithium claim on 10,000 acres in Nevada

Posted by in categories: business, engineering, sustainability

Tesla is now officially getting into the mining business with a lithium claim on 10,000 acres in Nevada.

At the Battery Day event yesterday, as part of its entire new battery supply strategy, Tesla announced that it is developing its own lithium processing method.

Drew Baglino, SVP of engineering at Tesla, said:

Sep 20, 2020

Geoengineering Is the Only Solution to Our Climate Calamities

Posted by in categories: climatology, engineering

Altering Earth’s geophysical environment is a moon shot—and it will be the only way to reverse the damage done. It’s time to take it more seriously.

Sep 20, 2020

Former NASA Astronaut will be Commander of Axiom’s civilian flight aboard SpaceX’s Crew Dragon

Posted by in categories: biotech/medical, engineering, law, space travel

Featured image source: NASA / spacex

Axiom Space Inc. is a Houston, Texas start-up, founded by Michael Suffredini who served as NASA’s International Space Station (ISS) Program Manager from 2005 to 2015. He was responsible for overseeing ISS transition from assembly to the initiation of commercial operations. Axiom is mostly staffed by NASA ex-employees, including former NASA Administrator Charles Bolden. – “The leadership team also includes world-class, specialized expertise in commercial utilization of microgravity, on-orbit operations, astronaut training, space financing, engineering, space system architecture/design/development, space medicine, marketing, and law,” the company states. Together, they are all working towards the commercialization of space.

Axiom aims to build a space station in low Earth orbit to continue operations once NASA retires the ISS program and moves beyond the orbiting laboratory to focus operations on the lunar surface. The company also offers spaceflights for regular civilians to experience microgravity and amazing views of Earth from ISS. “While making access to Low Earth Orbit global during the remainder of ISS’ lifetime, Axiom is constructing the future platform that will serve as humanity’s permanently growing home, scientific and industrial complex in Low Earth Orbit (LEO) – the cornerstone of human activity in space,” company states on its website.

Sep 20, 2020

Quantum Enhanced Atomic Force Microscopy: Squeezed Light Reduces Noise

Posted by in categories: computing, engineering, quantum physics

Researchers at the Department of Energy’s Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

“We showed how to use squeezed light – a workhorse of quantum information science – as a practical resource for microscopy,” said Ben Lawrie of ORNL’s Materials Science and Technology Division, who led the research with Raphael Pooser of ORNL’s Computational Sciences and Engineering Division. “We measured the displacement of an atomic force microscope microcantilever with sensitivity better than the standard quantum limit.”

Unlike today’s classical microscopes, Pooser and Lawrie’s quantum microscope requires quantum theory to describe its sensitivity. The nonlinear amplifiers in ORNL’s microscope generate a special quantum light source known as squeezed light.

Sep 16, 2020

ESA awards €129.4 million contract to planetary defence mission Hera

Posted by in categories: asteroid/comet impacts, engineering, existential risks

Darmstadt, 15 September 2020. – The European Space Agency (ESA) awarded a €129.4 million contract covering the design, manufacturing and testing of Hera, the space agency’s first mission for planetary defence, ESA announced today.

The contract was signed by Franco Ongaro, ESA Director of Technology, Engineering and Quality, and Marco Fuchs, CEO of Germany space company OHB, prime contractor of the Hera consortium, ESA said today. The signing took place at ESA’s European Space Operations Centre (ESOC) in Darmstadt, Germany, which will serve as mission control for the 2024-launched Hera.

The mission will be Europe’s contribution to an international asteroid deflection effort, set to perform sustained exploration of a double asteroid system, ESA said.

Continue reading “ESA awards €129.4 million contract to planetary defence mission Hera” »

Sep 9, 2020

Transistor-integrated cooling for a more powerful chip

Posted by in categories: computing, engineering

Managing the heat generated in electronics is a huge problem, especially with the constant push to reduce the size and pack as many transistors as possible in the same chip. The whole problem is how to manage such high heat fluxes efficiently. Usually, electronic technologies, designed by electrical engineers, and cooling systems, designed by mechanical engineers, are done independently and separately. But now, EPFL researchers have quietly revolutionized the process by combining these two design steps into one: They’ve developed an integrated microfluidic cooling technology together with the electronics that can efficiently manage the large heat fluxes generated by transistors. Their research, which has been published in Nature, will lead to even more compact electronic devices and enable the integration of power converters, with several high-voltage devices, into a single chip.

The best of both worlds

In this ERC-funded project, Professor Elison Matioli, his doctoral student Remco Van Erp, and their team from the School of Engineering’s Power and Wide-band-gap Electronics Research Laboratory (POWERLAB), began working to bring about a real change in designing by conceiving the electronics and together, right from the beginning. The group sought to extract the very near the regions that heat up the most in the . “We wanted to combine skills in electrical and mechanical engineering in order to create a new kind of device,” says Van Erp.

Sep 9, 2020

Black Hole Plasma Conditions Created on Earth – Laser Briefly Uses 1,000 Times the Electric Consumption of the Entire Globe

Posted by in categories: cosmology, engineering, particle physics

One of the world’s largest petawatt laser facility, LFEX, located in the Institute of Laser Engineering at Osaka University. Credit: Osaka University.

Laser Engineering at Osaka University have successfully used short, but extremely powerful laser blasts to generate magnetic field reconnection inside a plasma. This work may lead to a more complete theory of X-ray emission from astronomical objects like black holes.

In addition to being subjected to extreme gravitational forces, matter being devoured by a black hole can be also be pummeled by intense heat and magnetic fields. Plasmas, a fourth state of matter hotter than solids, liquids, or gasses, are made of electrically charged protons and electrons that have too much energy to form neutral atoms. Instead, they bounce frantically in response to magnetic fields. Within a plasma, magnetic reconnection is a process in which twisted magnetic field lines suddenly “snap” and cancel each other, resulting in the rapid conversion of magnetic energy into particle kinetic energy. In stars, including our sun, reconnection is responsible for much of the coronal activity, such as solar flares. Owing to the strong acceleration, the charged particles in the black hole’s accretion disk emit their own light, usually in the X-ray region of the spectrum.