БЛОГ

Archive for the ‘engineering’ category: Page 15

Jul 4, 2024

Researchers Unlock “Materials Genome”, Opening Possibilities for Next-Generation Design

Posted by in categories: biotech/medical, engineering

A new microscopy method has allowed researchers to detect tiny changes in the atomic-level architecture of crystalline materials like advanced steels for ship hulls and custom silicon for electronics. It could advance our ability to understand the fundamental origins of materials properties and behaviour.

In a paper published today in Nature Materials, researchers from the University of Sydney’s School of Aerospace, Mechanical and Mechatronic Engineering introduced a new way to decode the atomic relationships within materials.

The breakthrough could assist in the development of stronger and lighter alloys for the aerospace industry, new generation semiconductors for electronics, and improved magnets for electric motors. It could also enable the creation of sustainable, efficient and cost-effective products.

Jul 3, 2024

New ink-based method offers best recipe yet for thermoelectric devices

Posted by in categories: energy, engineering, transportation

Power plants, factories, car engines—everything that consumes energy produces heat, much of which is wasted. Thermoelectric devices could capture this wasted heat and convert it into electricity, but their production has been prohibitively costly and complex.

Yanliang Zhang, the Advanced Materials and Manufacturing Collegiate Professor of Aerospace and Mechanical Engineering at the University of Notre Dame, and colleagues from a multi-institutional team have devised an ink-based manufacturing method making feasible the large-scale and cost-effective manufacturing of highly efficient thermoelectric devices.

Their finding were recently published in Energy & Environmental Science.

Jun 29, 2024

Researchers find brains can tune their navigation system without landmarks

Posted by in categories: biological, engineering, neuroscience

Johns Hopkins research sheds new light on how mammals track their position and orientation while moving, revealing that visual motion cues alone allow the brain to adjust and recalibrate its internal map even in the absence of stable visual landmarks.

Their results are published in Nature Neuroscience.

“When you move through space, you have a lot of competing telling you where you are and how fast you are going, and your brain has to make sense of that,” said study co-leader Noah Cowan, professor of mechanical engineering at the Whiting School of Engineering and director of the Locomotion in Mechanical and Biological Systems (LIMBS) Laboratory.

Jun 27, 2024

Detecting Alien Terraforming with Artificial Greenhouse Gases

Posted by in categories: alien life, climatology, engineering, environmental

Could we identify an alien terraformed planet through the detection of greenhouse gases? This is what a recent study published in The Astrophysical Journal hopes to address as a team of international researchers investigated whether artificial greenhouse gases could be detected from an exoplanet whose alien inhabitants could be attempting to terraform that world, either from trying to control its climate or terraforming an uninhabitable planet into a habitable one. This study holds the potential to help scientists better understand the criteria and methods for identifying an extraterrestrial civilization, especially with the number of confirmed exoplanets increasing almost weekly.

“For us, these gases are bad because we don’t want to increase warming” said Dr. Edward Schwieterman, who is an Assistant Professor of Astrobiology at the University of California Riverside and lead author of the study. “But they’d be good for a civilization that perhaps wanted to forestall an impending ice age or terraform an otherwise-uninhabitable planet in their system, as humans have proposed for Mars.”

Jun 27, 2024

Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket

Posted by in categories: 3D printing, biotech/medical, computing, engineering

Researchers from MIT and the University of Texas have developed a prototype for a handheld, chip-based 3D printer using a photonic chip that emits beams of light to cure resin into solid objects. This innovative technology could revolutionize the production of customized, low-cost objects on-the-go and has potential applications in medical and engineering fields.

Portable 3D Printing Technology

Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation.

Jun 27, 2024

Mechanical computer relies on kirigami cubes, not electronics

Posted by in categories: computing, engineering

North Carolina State University researchers have developed a kirigami-inspired mechanical computer that uses a complex structure of rigid, interconnected polymer cubes to store, retrieve and erase data without relying on electronic components. The system also includes a reversible feature that allows users to control when data editing is permitted and when data should be locked in place.

Mechanical computers are computers that operate using rather than electronic ones. Historically, these mechanical components have been things like levers or gears. However, mechanical computers can also be made using structures that are multistable, meaning they have more than one stable state—think of anything that can be folded into more than one stable position.

“We were interested in doing a couple things here,” says Jie Yin, co-corresponding author of a paper on the work and an associate professor of mechanical and aerospace engineering at NC State. “First, we were interested in developing a stable, for storing data.

Jun 26, 2024

Emerging memristive neurons for neuromorphic computing and sensing

Posted by in categories: biological, computing, engineering

Inspired by the principles of the biological nervous system, neuromorphic engineering has brought a promising alternative approach to intelligence computing with high energy efficiency and low consumption. As pivotal components of neuromorphic system, artificial spiking neurons are powerful information processing units and can achieve highly complex nonlinear computations. By leveraging the switching dynamic characteristics of memristive device, memristive neurons show rich spiking behaviors with simple circuit. This report reviews the memristive neurons and their applications in neuromorphic sensing and computing systems. The switching mechanisms that endow memristive devices with rich dynamics and nonlinearity are highlighted, and subsequently various nonlinear spiking neuron behaviors emulated in these memristive devices are reviewed. Then, recent development is introduced on neuromorphic system with memristive neurons for sensing and computing. Finally, we discuss challenges and outlooks of the memristive neurons toward high-performance neuromorphic hardware systems and provide an insightful perspective for the development of interactive neuromorphic electronic systems.

Keywords: Memristive devices; artificial neurons; neuromorphic computing; neuromorphic sensing; spiking dynamics.

© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

Jun 26, 2024

Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing

Posted by in categories: biological, computing, engineering

Neuromorphic computing holds promise for building next-generation intelligent systems in a more energy-efficient way than the conventional von Neumann computing architecture. Memristive hardware, which mimics biological neurons and synapses, offers high-speed operation and low power consumption, enabling energy-and area-efficient, brain-inspired computing. Here, recent advances in memristive materials and strategies that emulate synaptic functions for neuromorphic computing are highlighted. The working principles and characteristics of biological neurons and synapses, which can be mimicked by memristive devices, are presented. Besides device structures and operation with different external stimuli such as electric, magnetic, and optical fields, how memristive materials with a rich variety of underlying physical mechanisms can allow fast, reliable, and low-power neuromorphic applications is also discussed. Finally, device requirements are examined and a perspective on challenges in developing memristive materials for device engineering and computing science is given.

Keywords: artificial synapses; memristive materials; neurons; synaptic plasticity.

© 2021 Wiley-VCH GmbH.

Jun 25, 2024

Engineering brain-on-a-chip platforms

Posted by in categories: engineering, neuroscience

Brain-on-a-chip models, mimicking brain physiology, hold promise for developing treatments for neurological disorders. This Review discusses the engineering challenges and opportunities for these devices, including the integration of 3D cell cultures and electrodes and scaffold engineering strategies.

Jun 24, 2024

Bending the Rules of Solar: Novel Flexible Perovskite/Silicon Tandem Solar Cell Achieves Record Efficiency

Posted by in categories: engineering, solar power, sustainability

A new study highlights the successful development of the first flexible perovskite/silicon tandem solar cell with a record efficiency of 22.8%, representing a major advance in flexible solar cell technology.

Although rigid perovskite/silicon tandem solar cells have seen impressive advancements, achieving efficiencies as high as 33.9%, the development of flexible versions of these cells has been limited. The main hurdle is improving light absorption in the ultrathin silicon bottom cells without compromising their mechanical flexibility.

In their pioneering study, a research team led by Dr. Xinlong Wang, Dr. Jingming Zheng, Dr. Zhiqin Ying, Prof. Xi Yang, and Prof. Jichun Ye from the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has successfully demonstrated the first flexible perovskite/silicon tandem solar cell based on ultrathin silicon, with a thickness of approximately 30 µm. By reducing wafer thicknesses and adjusting the feature sizes of light-trapping textures, they significantly improved the flexibility of the silicon substrate without compromising light utilization. Additionally, by capping the perovskite top cells, they enhanced the mechanical durability of the device, thus addressing concerns related to fractures in the silicon surface.

Page 15 of 262First1213141516171819Last