БЛОГ

Archive for the ‘engineering’ category: Page 180

Jul 23, 2009

Artificial brain ’10 years away’

Posted by in categories: engineering, human trajectories, information science, neuroscience, robotics/AI, supercomputing

Artificial brain ’10 years away’

By Jonathan Fildes
Technology reporter, BBC News, Oxford

A detailed, functional artificial human brain can be built within the next 10 years, a leading scientist has claimed.

Continue reading “Artificial brain '10 years away'” »

Jul 1, 2009

Electron Beam Free Form Fabrication process — progress toward self sustaining structures

Posted by in categories: complex systems, engineering, habitats, lifeboat, space, sustainability

For any assembly or structure, whether an isolated bunker or a self sustaining space colony, to be able to function perpetually, the ability to manufacture any of the parts necessary to maintain, or expand, the structure is an obvious necessity. Conventional metal working techniques, consisting of forming, cutting, casting or welding present extreme difficulties in size and complexity that would be difficult to integrate into a self sustaining structure.

Forming requires heavy high powered machinery to press metals into their final desired shapes. Cutting procedures, such as milling and lathing, also require large, heavy, complex machinery, but also waste tremendous amounts of material as large bulk shapes are cut away emerging the final part. Casting metal parts requires a complex mold construction and preparation procedures, not only does a negative mold of the final part need to be constructed, but the mold needs to be prepared, usually by coating in ceramic slurries, before the molten metal is applied. Unless thousands of parts are required, the molds are a waste of energy, resources, and effort. Joining is a flexible process, and usually achieved by welding or brazing and works by melting metal between two fixed parts in order to join them — but the fixed parts present the same manufacturing problems.

Ideally then, in any self sustaining structure, metal parts should be constructed only in the final desired shape but without the need of a mold and very limited need for cutting or joining. In a salient progressive step toward this necessary goal, NASA demonstrates the innovative Electron Beam Free Forming Fabrication (http://www.aeronautics.nasa.gov/electron_beam.htm) Process. A rapid metal fabrication process essentially it “prints” a complex three dimensional object by feeding a molten wire through a computer controlled gun, building the part, layer by layer, and adding metal only where you desire it. It requires no molds and little or no tooling, and material properties are similar to other forming techniques. The complexity of the part is limited only by the imagination of the programmer and the dexterity of the wire feed and heating device.

Continue reading “Electron Beam Free Form Fabrication process — progress toward self sustaining structures” »

Jun 4, 2009

Ripsaw Tank Delivers Death at 60MPH — Popular Science

Posted by in categories: counterterrorism, defense, engineering, military, robotics/AI
An unmanned beast that cruises over any terrain at speeds that leave an M1A Abrams in the dust
Mean Machine: Troops could use the Ripsaw as an advance scout, sending it a mile or two ahead of a convoy, and use its cameras and new sensor technology to sniff out roadside bombs or ambushes John B. Carnett

Continue reading “Ripsaw Tank Delivers Death at 60MPH — Popular Science” »

Apr 29, 2009

DIYbio.org

Posted by in categories: biological, biotech/medical, chemistry, education, engineering, ethics, human trajectories, open access, open source

About

DIYbio is an organization that aims to help make biology a worthwhile pursuit for citizen scientists, amateur biologists, and DIY biological engineers who value openness and safety. This will require mechanisms for amateurs to increase their knowledge and skills, access to a community of experts, the development of a code of ethics, responsible oversight, and leadership on issues that are unique to doing biology outside of traditional professional settings.

What is DIYbio in 4 minutes?

Get Involved

You can read about current events and developments in the DIYbio community by reading or subscribing to the blog.

Get in contact or get involved through discussions on our mailing list, or by attending or hosting a local DIYbio meetup.

Continue reading “DIYbio.org” »

Mar 13, 2009

Q&A: The robot wars have arrived

Posted by in categories: defense, engineering, futurism, military, robotics/AI

March 12, 2009 10:00 AM PDT

Q&A: The robot wars have arrived

Continue reading “Q&A: The robot wars have arrived” »

Mar 11, 2009

Lockheed offers ready-to-go supersoldier exoskeleton

Posted by in categories: defense, engineering, human trajectories, military, robotics/AI

Jetfuel powerpack, armour… shoulder turret?

Free whitepaper – Data center projects: standardized process

Continue reading “Lockheed offers ready-to-go supersoldier exoskeleton” »

Oct 2, 2007

Geoengineering: A Cure for Global Warming

Posted by in categories: engineering, sustainability



Two of Britain’s leading environmental thinkers say it is time to develop a quick technical fix for climate change. Writing in the journal Nature, Science Museum head Chris Rapley and Gaia theorist James Lovelock suggest looking at boosting ocean take-up of CO2.

Floating pipes reaching down from the top of the ocean into colder water below move up and down with the swell.

As the pipe moves down, cold water flows up and out onto the ocean surface. A simple valve blocks any downward flow when the pipe is moving upwards.

Colder water is more “productive” — it contains more life, and so in principle can absorb more carbon.

Finally some practical solutions are being introduced to mitigate global warming. The BBC article mention the US company, Atmocean, that is already testing such a system.

Continue reading “Geoengineering: A Cure for Global Warming” »

Feb 17, 2007

Open Source Terraforming

Posted by in categories: engineering, open source, sustainability

Whether we like it or not, geoengineering — a process I’ve taken to calling “(re)terraforming the Earth” — is now on the table as a strategy for dealing with onrushing climate disaster. This isn’t because it’s a particularly good idea; as far as we presently know, the potential negative impacts of geoengineering projects seem to significantly outweigh any benefits. Nonetheless, (re)terraforming has drawn an increasing amount of attention over the past few months. One key reason is that, if it could be made to work, it wouldn’t just moderate climate change — i.e., slow it or stop it — it would actually serve as a climate change remediation method, reversing global warming.

The cynical and the insipid apparently believe that pursuing the geoengineering option would allow us to avoid making any changes in technology or behavior intended to reduce greenhouse gas output. This sort of logic is wrong, utterly wrong. For any plausible geoengineering project to succeed, we’d have to have already stabilized the climate. As it turns out, the brilliant and clearly-needed advances in technology and changes in behavior supported by those of us who proudly wear the label “bright green” will do exactly this, reducing, even eventually eliminating, anthropogenic emissions of greenhouse gases. We need to do this as quickly as possible. As the saying goes, if you want to get out of the hole you’re in, the first thing to do is stop digging.

But none of the bright green solutions — ultra-efficient buildings and vehicles, top-to-bottom urban redesigns, local foods, renewable energy systems, and the like — will do anything to reduce the anthropogenic greenhouse gases that have already been emitted. The best result we get is stabilizing at an already high greenhouse gas level. And because of ocean thermal inertia and other big, slow climate effects, the Earth will continue to warm for a couple of decades even after we stop all greenhouse gas emissions. Transforming our civilization into a bright green wonderland won’t be easy, and under even the most optimistic estimates will take at least a decade; by the time we finally stop putting out additional greenhouse gases, we could well have gone past a point where globally disastrous results are inevitable. In fact, given the complexity of climate feedback systems, we may already have passed such a tipping point, even if we stopped all emissions today.

In other words, while stopping digging is absolutely necessary, it won’t actually refill the hole.

Continue reading “Open Source Terraforming” »