БЛОГ

Archive for the ‘engineering’ category: Page 4

Jun 27, 2024

Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket

Posted by in categories: 3D printing, biotech/medical, computing, engineering

Researchers from MIT and the University of Texas have developed a prototype for a handheld, chip-based 3D printer using a photonic chip that emits beams of light to cure resin into solid objects. This innovative technology could revolutionize the production of customized, low-cost objects on-the-go and has potential applications in medical and engineering fields.

Portable 3D Printing Technology

Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation.

Jun 27, 2024

Mechanical computer relies on kirigami cubes, not electronics

Posted by in categories: computing, engineering

North Carolina State University researchers have developed a kirigami-inspired mechanical computer that uses a complex structure of rigid, interconnected polymer cubes to store, retrieve and erase data without relying on electronic components. The system also includes a reversible feature that allows users to control when data editing is permitted and when data should be locked in place.

Mechanical computers are computers that operate using rather than electronic ones. Historically, these mechanical components have been things like levers or gears. However, mechanical computers can also be made using structures that are multistable, meaning they have more than one stable state—think of anything that can be folded into more than one stable position.

“We were interested in doing a couple things here,” says Jie Yin, co-corresponding author of a paper on the work and an associate professor of mechanical and aerospace engineering at NC State. “First, we were interested in developing a stable, for storing data.

Jun 26, 2024

Emerging memristive neurons for neuromorphic computing and sensing

Posted by in categories: biological, computing, engineering

Inspired by the principles of the biological nervous system, neuromorphic engineering has brought a promising alternative approach to intelligence computing with high energy efficiency and low consumption. As pivotal components of neuromorphic system, artificial spiking neurons are powerful information processing units and can achieve highly complex nonlinear computations. By leveraging the switching dynamic characteristics of memristive device, memristive neurons show rich spiking behaviors with simple circuit. This report reviews the memristive neurons and their applications in neuromorphic sensing and computing systems. The switching mechanisms that endow memristive devices with rich dynamics and nonlinearity are highlighted, and subsequently various nonlinear spiking neuron behaviors emulated in these memristive devices are reviewed. Then, recent development is introduced on neuromorphic system with memristive neurons for sensing and computing. Finally, we discuss challenges and outlooks of the memristive neurons toward high-performance neuromorphic hardware systems and provide an insightful perspective for the development of interactive neuromorphic electronic systems.

Keywords: Memristive devices; artificial neurons; neuromorphic computing; neuromorphic sensing; spiking dynamics.

© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.

Jun 26, 2024

Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing

Posted by in categories: biological, computing, engineering

Neuromorphic computing holds promise for building next-generation intelligent systems in a more energy-efficient way than the conventional von Neumann computing architecture. Memristive hardware, which mimics biological neurons and synapses, offers high-speed operation and low power consumption, enabling energy-and area-efficient, brain-inspired computing. Here, recent advances in memristive materials and strategies that emulate synaptic functions for neuromorphic computing are highlighted. The working principles and characteristics of biological neurons and synapses, which can be mimicked by memristive devices, are presented. Besides device structures and operation with different external stimuli such as electric, magnetic, and optical fields, how memristive materials with a rich variety of underlying physical mechanisms can allow fast, reliable, and low-power neuromorphic applications is also discussed. Finally, device requirements are examined and a perspective on challenges in developing memristive materials for device engineering and computing science is given.

Keywords: artificial synapses; memristive materials; neurons; synaptic plasticity.

© 2021 Wiley-VCH GmbH.

Jun 25, 2024

Engineering brain-on-a-chip platforms

Posted by in categories: engineering, neuroscience

Brain-on-a-chip models, mimicking brain physiology, hold promise for developing treatments for neurological disorders. This Review discusses the engineering challenges and opportunities for these devices, including the integration of 3D cell cultures and electrodes and scaffold engineering strategies.

Jun 24, 2024

Bending the Rules of Solar: Novel Flexible Perovskite/Silicon Tandem Solar Cell Achieves Record Efficiency

Posted by in categories: engineering, solar power, sustainability

A new study highlights the successful development of the first flexible perovskite/silicon tandem solar cell with a record efficiency of 22.8%, representing a major advance in flexible solar cell technology.

Although rigid perovskite/silicon tandem solar cells have seen impressive advancements, achieving efficiencies as high as 33.9%, the development of flexible versions of these cells has been limited. The main hurdle is improving light absorption in the ultrathin silicon bottom cells without compromising their mechanical flexibility.

In their pioneering study, a research team led by Dr. Xinlong Wang, Dr. Jingming Zheng, Dr. Zhiqin Ying, Prof. Xi Yang, and Prof. Jichun Ye from the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has successfully demonstrated the first flexible perovskite/silicon tandem solar cell based on ultrathin silicon, with a thickness of approximately 30 µm. By reducing wafer thicknesses and adjusting the feature sizes of light-trapping textures, they significantly improved the flexibility of the silicon substrate without compromising light utilization. Additionally, by capping the perovskite top cells, they enhanced the mechanical durability of the device, thus addressing concerns related to fractures in the silicon surface.

Jun 23, 2024

Oops! Geoengineering Trick to Cool Brutal Heat Could Spike Temperature Elsewhere, Scientists Say

Posted by in categories: engineering, health, particle physics, space

Researchers are warning that geoengineering efforts to help cool temperatures in California could trigger heatwaves in Europe, a “scary” implication given the sheer lack of regulation controlling such measures across the globe.

As The Guardian reports, scientists have suggested spraying aerosols into clouds over the ocean to cool down the surface below, a practice called “marine cloud brightening.” As the name suggests, the idea is to brighten clouds to make them reflect more of the Sun’s radiation back into space.

Last month, a team of University of Washington researchers attempted to do just that in the San Francisco Bay using a machine that sprays tiny sea-salt particles, amid criticism from environmentalists. The experiment was later shut down by city officials, citing health concerns.

Jun 23, 2024

Lockheed Martin and US Air Force Complete Flight Test of Intercontinental Ballistic Missile Reentry Vehicle

Posted by in categories: engineering, military, space

The Lockheed Martin and U.S. Air Force conducted a planned flight test of the unarmed, developmental Mk21A reentry vehicle in the Pacific Ocean on June 17. Mk21A is the U.S. Air Force’s integrated reentry vehicle and the critical front-end of the service’s future intercontinental ballistic missile (ICBM) weapon system. This flight test from Vandenberg Space Force Base in California, tested Lockheed Martin’s Mk21A design components and technologies for the vehicle. It also continues Lockheed Martin’s leadership and expertise in developing effective and reliable reentry vehicle technology.

This testing is done through Lockheed Martin’s Engineering and Manufacturing Development contract with the Air Force Nuclear Systems Center. Data collected during the event will further inform Mk21A design and future flight test activities. The company’s Mk21A program is on-schedule. Lockheed Martin is maturing its Mk21A design, which includes the arming and fuzing subsystem and support equipment, using advanced digital engineering tools, including advanced modeling and simulation. This allows for efficiency in schedule, reduced cost and risk, and increased confidence in system performance.

“This progress is built on a strong foundation—Lockheed Martin’s 65-plus years of demonstrated exceptional performance in reentry technologies and a pioneering digital engineering approach on this program from its beginning,” said Jay Watson, vice president of Strategic Reentry at Lockheed Martin. “We remain focused on delivering this capability for the warfighter as a trusted partner to the U.S. Air Force for ICBM reentry systems and modernization of the deterrent triad.”

Jun 17, 2024

Charge your Laptop in a Minute? Supercapacitors can help; new research offers clues

Posted by in categories: biological, chemistry, computing, engineering, mobile phones, sustainability, transportation

Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. While not possible yet, new research by a team of CU Boulder scientists could potentially lead to such advances.

Published today in the Proceedings of the National Academy of Sciences, researchers in Ankur Gupta’s lab discovered how ions, move within a complex network of minuscule pores. The breakthrough could lead to the development of more efficient energy storage devices, such as supercapacitors, said Gupta, an assistant professor of chemical and biological engineering.

“Given the critical role of energy in the future of the planet, I felt inspired to apply my chemical engineering knowledge to advancing energy storage devices,” Gupta said. “It felt like the topic was somewhat underexplored and, as such, the perfect opportunity.”

Jun 17, 2024

From Common White Powder to Quantum Innovation: Unlocking Nearly Noiseless Qubits

Posted by in categories: chemistry, computing, engineering, particle physics, quantum physics

Researchers discovered that bismuth atoms embedded in calcium oxide can function as qubits for quantum computers, providing a low-noise, durable, and inexpensive alternative to current materials. This groundbreaking study highlights its potential to transform quantum computing and telecommunications.

Calcium oxide is an inexpensive, chalky chemical compound frequently used in the manufacturing of cement, plaster, paper, and steel. However, the common material may soon have a more high-tech application.

Scientists used theoretical and computational approaches to discover how tiny, lone atoms of bismuth embedded within solid calcium oxide can act as qubits — the building blocks of quantum computers and quantum communication devices. These qubits were described by University of Chicago Pritzker School of Molecular Engineering researchers and their collaborator in Sweden on June 6 in the scientific journal Nature Communications.

Page 4 of 25012345678Last