БЛОГ

Archive for the ‘engineering’ category: Page 48

Aug 1, 2023

Engineering tRNA abundances for synthetic cellular systems

Posted by in category: engineering

Mature fields of engineering use physics-based models to design systems that work reliably the first time. Here the authors show how a similar approach can be used to design and build a cellular-scale system, protein synthesis, from scratch.

Jul 30, 2023

Artificial photosynthesis with engineering of protein crystals in bacteria

Posted by in categories: engineering, genetics, solar power, sustainability

In-cell engineering can be a powerful tool for synthesizing functional protein crystals with promising catalytic properties, show researchers at Tokyo Tech. Using genetically modified bacteria as an environmentally friendly synthesis platform, the researchers produced hybrid solid catalysts for artificial photosynthesis. These catalysts exhibit high activity, stability, and durability, highlighting the potential of the proposed innovative approach.

Protein crystals, like regular crystals, are well-ordered molecular structures with diverse properties and a huge potential for customization. They can assemble naturally from materials found within cells, which not only greatly reduces the synthesis costs but also lessens their environmental impact.

Although are promising as catalysts because they can host various functional molecules, current techniques only enable the attachment of small molecules and simple proteins. Thus, it is imperative to find ways to produce protein crystals bearing both natural enzymes and synthetic functional molecules to tap their full potential for enzyme immobilization.

Jul 29, 2023

Enhanced light absorption in thin silicon photodetectors with photon-trapping structures

Posted by in categories: biotech/medical, engineering

Photonic systems are quickly gaining traction in many emerging applications, including optical communications, lidar sensing, and medical imaging. However, the widespread adoption of photonics in future engineering solutions hinges on the cost of manufacturing photodetectors, which, in turn, largely depends on the kind of semiconductor utilized for the purpose.

Traditionally, silicon (Si) has been the most prevalent semiconductor in the , so much so that most of the industry has matured around this material. Unfortunately, Si has a relatively weak light absorption coefficient in the near-infrared (NIR) spectrum compared to those of other semiconductors such as (GaAs).

Because of this, GaAs and related alloys thrive in photonic applications, but are incompatible with the traditional complementary metal-oxide-semiconductor (CMOS) processes used in the production of most electronics. This leads to a drastic increase in their manufacturing costs.

Jul 29, 2023

Novel Raman technique breaks through 50 years of frustration

Posted by in categories: biotech/medical, chemistry, engineering, quantum physics

Raman spectroscopy—a chemical analysis method that shines monochromatic light onto a sample and records the scattered light that emerges—has caused frustration among biomedical researchers for more than half a century. Due to the heat generated by the light, live proteins are nearly destroyed during the optical measurements, leading to diminishing and non-reproducible results. As of recently, however, those frustrations may now be a thing of the past.

A group of researchers with the Institute for Quantum Sciences and Engineering at Texas A&M University and the Texas A&M Engineering Experiment Station (TEES) have developed a new technique that allows low-concentration and low-dose screenings of protein-to-ligand interactions in physiologically relevant conditions.

Titled thermostable-Raman-interaction-profiling (TRIP), this new approach is a paradigm-shifting answer to a long-standing problem that provides label-free, highly reproducible Raman spectroscopy measurements. The researchers published their findings in the Proceedings of the National Academy of Sciences.

Jul 29, 2023

Team creates simple superconducting device that could dramatically cut energy use in computing

Posted by in categories: computing, engineering, quantum physics

MIT scientists and colleagues have created a simple superconducting device that could transfer current through electronic devices much more efficiently than is possible today. As a result, the new diode, a kind of switch, could dramatically cut the amount of energy used in high-power computing systems, a major problem that is estimated to become much worse.

Even though it is in the early stages of development, the diode is more than twice as efficient as similar ones reported by others. It could even be integral to emerging quantum computing technologies. The work, which is reported in the July 13 online issue of Physical Review Letters, is also the subject of a news story in Physics Magazine.

“This paper showcases that the superconducting diode is an entirely solved problem from an engineering perspective,” says Philip Moll, Director of the Max Planck Institute for the Structure and Dynamics of Matter in Germany. Moll was not involved in the work. “The beauty of [this] work is that [Moodera and colleagues] obtained record efficiencies without even trying [and] their structures are far from optimized yet.”

Jul 28, 2023

Arm launches Semiconductor Education Alliance to fight the world’s tech talent shortage

Posted by in categories: education, engineering

Head over to our on-demand library to view sessions from VB Transform 2023. Register Here

Arm and its industry partners have announced a new global initiative dubbed the Semiconductor Education Alliance.

The effort includes partners across industry, academia and research in an effort to combat the world’s shortage of semiconductor engineers and other tech talent, Gary Campbell, executive vice president of central engineering at Arm, said in an interview with VentureBeat.

Jul 28, 2023

A butterfly’s first flight inspires a new way to produce force and electricity

Posted by in categories: biotech/medical, engineering

The wings of a butterfly are made of chitin, an organic polymer that is the main component of the shells of arthropods like crustaceans and other insects. As a butterfly emerges from its cocoon in the final stage of metamorphosis, it will slowly unfold its wings into their full grandeur.

During the unfolding, the chitinous material becomes dehydrated while blood pumps through the veins of the butterfly, producing forces that reorganize the molecules of the material to provide the unique strength and stiffness necessary for flight. This natural combination of forces, movement of water, and molecular organization is the inspiration behind Associate Professor Javier G. Fernandez’s research.

Continue reading “A butterfly’s first flight inspires a new way to produce force and electricity” »

Jul 27, 2023

July 1816: Fresnel’s Evidence for the Wave Theory of Light

Posted by in categories: education, engineering, mathematics, particle physics

Until the early 20th century, the question of whether light is a particle or a wave had divided scientists for centuries. Isaac Newton held the former stance and advocated for his “corpuscular” theory. But by the early 19th century, the wave theory was making a comeback, thanks in part to the work of a French civil engineer named Augustin-Jean Fresnel.

Born in 1,788 to an architect, the young Fresnel had a strict religious upbringing, since his parents were Jansenists — a radical sect of the Catholic Church that embraced predestination. Initially he was home-schooled, and did not show early academic promise; he could barely read by the time he was eight. Part of this may have been due to all the political upheaval in France at the time. Fresnel was just one year old when revolutionaries stormed the Bastille in 1,789, and five when the Reign of Terror began.

Eventually the family settled in a small village north of Caen, and when Fresnel was 12, he was enrolled in a formal school. That is where he discovered science and mathematics. He excelled at both, so much so that he decided to study engineering, first at the École Polytechnique in Paris, and then at the École Nacionale des Ponts et Chaussées.

Jul 25, 2023

Researchers describe ‘nanoclays,’ an innovative addition to tools for chemists

Posted by in categories: biotech/medical, chemistry, engineering

Microscopic materials made of clay, designed by researchers at the University of Missouri, could be key to the future of synthetic materials chemistry. By enabling scientists to produce chemical layers tailor-made to deliver specific tasks based on the goals of the individual researcher, these materials, called nanoclays, can be used in a wide variety of applications, including the medical field or environmental science.

A paper describing this research is published in the journal ACS Applied Engineering Materials.

A fundamental part of the material is its electrically charged surface, said Gary Baker, co-principal investigator on the project and an associate professor in the Department of Chemistry.

Jul 24, 2023

Scientists accidentally capture metals ‘healing’ themselves

Posted by in categories: engineering, nanotechnology

Metals aren’t known to “heal” themselves on their own; once they break, it’s assumed the materials remain broken unless outside forces reform them. But new research into metallic properties indicates this isn’t always the case. In fact, some metals appear to naturally mend of their own accord—a discovery that could one day change engineering designs here on Earth and beyond.

According to a study published last week in Nature, materials scientists from Sandia National Laboratories in Albuquerque, New Mexico, and Texas A&M University discovered at least some metals—in this case copper and platinum—can “undergo intrinsic self-healing.” As Live Science recently noted, the team’s observations came completely by accident while observing the two materials at a nanoscale level.

[Related: Watch this metallic material move like the T-1000 from ‘Terminator 2’].

Page 48 of 259First4546474849505152Last