Toggle light / dark theme

Random noise, such as background hubbub on a phone call, is usually thought of as unwanted interference. Now researchers at Columbia Engineering find the brain may harness unavoidable random fluctuations of its activity to perform useful computations, particularly in tasks relying on memory.

These findings not only deepen our understanding of how the brain works, but also may provide a blueprint for building smarter, more resilient technologies, the research team says.

They detailed their findings Jan. 16 in the Proceedings of the National Academy of Sciences.

Tune Therapeutics, a Durham biotechnology startup co-founded by a Duke professor, announced the completion of its Series B fundraising round on Jan. 12, in which it raised $175 million to support clinical trials for its epigenome editor.

The company will use the funding to advance clinical trials for Tune-401, the epigenetic silencing drug for treating chronic Hepatitis B — a viral infection that damages the liver and affects millions globally. The investment will also support the development of various other therapies, including additional gene, cell and regenerative therapy programs.

“The goal is to epigenetically repress the virus to prevent it from being able to replicate and make the viral proteins that it would normally produce,” said Charles Gersbach, John W. Strohbehn distinguished professor of biomedical engineering and cofounder of Tune Therapeutics.

The idea of traveling through interstellar space using spacecraft propelled by ultrathin sails may sound like the stuff of sci-fi novels. But in fact, a program started in 2016 by Stephen Hawking and Yuri Milner, known as the Breakthrough Starshot Initiative, has been exploring the idea. The concept is to use lasers to propel miniature space probes attached to “lightsails” to reach ultrafast speeds and eventually our nearest star system, Alpha Centauri.

Caltech is leading the worldwide community working toward achieving this audacious goal.

“The will travel faster than any previous spacecraft, with potential to eventually open interstellar distances to direct spacecraft exploration that are now only accessible by remote observation,” explains Harry Atwater, the Otis Booth Leadership Chair of the Division of Engineering and Applied Science and the Howard Hughes Professor of Applied Physics and Materials Science at Caltech.

A team of researchers from Universidad Carlos III de Madrid (UC3M) has developed an innovative technique that allows the production of regular oil lenses of uniform size on the surface of water in a simple and reproducible fashion. The technique will facilitate the study of the behavior of oily substances dispersed on water surfaces.

This discovery is crucial for understanding the dispersion of some liquids floating on water and could have many applications in oil spill mitigation and the food and textile industries. The study is published in the journal Physical Review Letters.

The initial discovery, according to the researchers, was the result of an “accident” during the preparation of a routine experiment. “We were trying to coat a water surface with a thin layer of oil, but the result was unexpected: Instead of a uniform film, we obtained a series of identical and very small droplets, which aroused our curiosity,” explains Javier Rodríguez, from UC3M’s Department of Thermal and Fluids Engineering.

A research team from Japan has developed a unified model to scale the transitional pressure development in a one-dimensional flow. This achievement provides a better understanding of how pressure fields build up in the confined fluid system for various acceleration situations, which might be applicable to biomechanics-related impact problems, such as human brain injuries caused by physical contact.

Liquid is usually not considered compressible, except for when subjected to a high-speed flow or rapid acceleration. The latter case is known as the water hammer theory, which often occurs with a loud sound when a water faucet is suddenly closed.

In recent years, the onset of mild traumatic brain injury has been discussed in a similar context, meaning that better understanding of this issue is important in not only traditional engineering but also emerging biomechanics applications.

A team of stem cell scientists have successfully used embryonic stem cell engineering to create a bi-paternal mouse—a mouse with two male parents—that lived until adulthood.

Their results, published on January 28, 2025, in Cell Stem Cell, describe how targeting a particular set of genes involved in reproduction allowed the researchers to overcome previously insurmountable challenges in unisexual reproduction in mammals.

Scientists have attempted to create bi-paternal mice before, but the embryos developed only to a certain point and then stopped growing. Here, the investigators, led by corresponding author Wei Li of the Chinese Academy of Sciences (CAS) in Beijing, focused on targeting imprinting genes, which regulate in a number of ways.

Harnessing The Power Of The Crowd To Solve Important Problems — Steve Rader — Program Manager — Center of Excellence for Collaborative Innovation & Tournament Lab, NASA.


Steve Rader (https://www.nasa.gov/people/steve-rader /) serves as the Program Manager of NASA’s Center of Excellence for Collaborative Innovation (CoECI — https://www.nasa.gov/coeci/) and the NASA Tournament Lab (NTL — https://www.nasa.gov/general/nasa-tou…), which are working to infuse challenge and crowdsourcing innovation approaches at NASA and across the federal government. CoECI focuses on the study and use of curated, crowdsourcing communities that utilize prize and challenge-based methods to deliver innovative solutions for NASA and the U.S. government.

In 2015, Steve was named as one of 20 Challenge Mentors for U.S. Government Services Administration’s (GSA) Prizes and Challenges government-wide community of practice. Steve has worked with various projects and organizations to develop and execute over 100 different challenges. He speaks regularly about NASA’s work in crowd-based challenges and the future of work both publicly and internally to the NASA workforce to promote the use of open innovation tools.

Scientists from the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) and MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

An international team of researchers led by the Strong Correlation Quantum Transport Laboratory of the RIKEN Center for Emergent Matter Science (CEMS) has demonstrated, in a world’s first, an ideal Weyl semimetal, marking a breakthrough in a decade-old problem of quantum materials.

Weyl fermions arise as collective quantum excitations of electrons in crystals. They are predicted to show exotic electromagnetic properties, attracting intense worldwide interest.

However, despite the careful study of thousands of crystals, most Weyl materials to date exhibit electrical conduction governed overwhelmingly by undesired, trivial electrons, obscuring the Weyl fermions. At last, researchers have synthesized a material hosting a single pair of Weyl fermions and no irrelevant electronic states.

The chameleon, a lizard known for its color-changing skin, is the inspiration behind a new electromagnetic material that could someday make vehicles and aircraft “invisible” to radar.

As reported today in the journal Science Advances, a team of UC Berkeley engineers has developed a tunable metamaterial microwave absorber that can switch between absorbing, transmitting or reflecting microwaves on demand by mimicking the chameleon’s color-changing mechanism.

“A key discovery was the ability to achieve both broadband absorption and high transmission in a single structure, offering adaptability in dynamic environments,” said Grace Gu, principal investigator of the study and assistant professor of mechanical engineering. “This flexibility has wide-ranging applications, from to advanced communication systems and energy harvesting.”