Toggle light / dark theme

Researchers are shining a light on cancer cells’ energy centers—literally—to damage these power sources and trigger widespread cancer cell death. In a new study, scientists combined strategies to deliver energy-disrupting gene therapy using nanoparticles manufactured to zero in only on cancer cells. Experiments showed the targeted therapy is effective at shrinking glioblastoma brain tumors and aggressive breast cancer tumors in mice.

The research team overcame a significant challenge to break up structures inside these cellular energy centers, called mitochondria, with a technique that induces light-activated electrical currents inside the cell. They named the technology mLumiOpto.

“We disrupt the membrane, so mitochondria cannot work functionally to produce energy or work as a signaling hub. This causes programmed followed by DNA damage—our investigations showed these two mechanisms are involved and kill the ,” said co-lead author Lufang Zhou, professor of biomedical engineering and surgery at The Ohio State University. “This is how the technology works by design.”

Fusion energy research is being pursued around the world as a means of solving energy problems. Magnetic confinement fusion reactors aim to extract fusion energy by confining extremely hot plasma in strong magnetic fields.

Its development is a comprehensive engineering project involving many advanced technologies, such as , reduced-activation materials, and beam and wave heating devices. In addition, predicting and controlling the confined plasma, in which numerous charged particles and electromagnetic fields interact in complex ways, is an interesting research subject from a physics perspective.

To understand the transport of energy and particles in confined plasmas, theoretical studies, using supercomputers, and experimental measurements of plasma turbulence are being conducted.

MIT engineers have discovered that the mobula ray, a type of filter-feeding aquatic ray, utilizes a unique mechanism to feed and breathe simultaneously, which could revolutionize industrial water filters.

By studying the geometry of the ray’s mouth and gill structures, they developed a blueprint for more efficient filtration systems, balancing permeability with selectivity to enhance performance without increasing energy consumption.

Filter Feeding and Engineering Insights.

Researchers have created nearly freestanding nanostructured two-dimensional (2D) gold monolayers, an impressive feat of nanomaterial engineering that could open up new avenues in catalysis, electronics, and energy conversion.

The research has been published in Nature Communications.

Gold is an inert metal which typically forms a solid three-dimensional (3D) structure. However, in its 2D form, it can unlock extraordinary properties, such as unique electronic behaviors, enhanced surface reactivity, and immense potential for revolutionary applications in catalysis and .

Large language models (LLMs) are increasingly automating tasks like translation, text classification and customer service. But tapping into an LLM’s power typically requires users to send their requests to a centralized server—a process that’s expensive, energy-intensive and often slow.

Now, researchers have introduced a technique for compressing an LLM’s reams of data, which could increase privacy, save energy and lower costs. Their findings are published on the arXiv preprint server.

The new algorithm, developed by engineers at Princeton and Stanford Engineering, works by trimming redundancies and reducing the precision of an LLM’s layers of information. This type of leaner LLM could be stored and accessed locally on a device like a phone or laptop and could provide performance nearly as accurate and nuanced as an uncompressed version.

Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2D grid, the team from the Cleland Lab has designed a modular quantum processor comprising a reconfigurable router as a central hub. This enables any two qubits to connect and entangle, where in the older system, qubits can only talk to the qubits physically nearest to them.

“A quantum computer won’t necessarily compete with a classical computer in things like memory size or CPU size,” said UChicago PME Prof. Andrew Cleland.

The shift from an awake state to unconsciousness is a phenomenon that has long captured the interest of scientists and philosophers alike, but how it happens has remained a mystery—until now. Through studies on rats, a team of researchers at Penn State has pinpointed the exact moment of loss of consciousness due to anesthesia, mapping what happens in different brain regions during that moment.

The study has implications for humans as well as for other types of loss of , such as sleep, the researchers said. They published their results in Advanced Science.

“People in the neuroscience field generally understand what happens to a patient who is going under anesthesia at a ,” said corresponding author Nanyin Zhang, the Dorothy Foehr Huck and J. Lloyd Huck Chair in Brain Imaging and professor of biomedical engineering at Penn State.

Wuhan University-led research is reporting the development of a revivable self-assembled supramolecular biomass fibrous framework (a novel foam filter) that efficiently removes microplastics from complex aquatic environments.

Plastic waste is a growing global concern due to significant levels of microplastic pollution circulating in soil and waterways and accumulating in the environment, food webs and human tissues. There are no conventional methods for removing microplastics, and developing strategies to handle diverse particle sizes and chemistries is an engineering challenge.

Researchers have been looking for affordable, capable of universal microplastic adsorption. Most existing approaches involve expensive or difficult-to-recover adsorbents, fail under certain environmental conditions, or only target a narrow range of microplastic types.

Researchers at Karolinska Institutet have succeeded in delivering targeted cancer treatment via small membrane bubbles that our cells use to communicate. A new study published in Nature Biomedical Engineering shows that the treatment reduces tumour growth and improves survival in mice.